113 research outputs found

    Characterization of the Torsional Piezoelectric-like Response of Tantalum Trisulfide Associated with Charge-Density-Wave Depinning

    Full text link
    We have studied the frequency and voltage dependence of voltage-induced torsional strains in orthorhombic TaS3 [V. Ya. Pokrovskii, et al, Phys. Rev. Lett. 98, 206404 (2007)] by measuring the modulation of the resonant frequency of an RF cavity containing the sample. The strain has an onset voltage below the charge-density-wave (CDW) threshold voltages associated with changes in shear compliance and resistance, suggesting that the strain is associated with polarization of the CDW rather than CDW current. Measurements with square-wave voltages show that the strain is very sluggish, not even reaching its dc value at a frequency of 0.1 Hz, but the dynamics appear to be very sample dependent. By applying oscillating torque while biasing the sample with a dc current, we have also looked for strain induced voltage in the sample; none is observed at the low biases where the voltage-induced strains first occur, but an induced voltage is observed at higher biases, probably associated with strain-dependent CDW conductance.Comment: 11 pages, including 3 figures, to be published in Phys. Rev. B (Rapid Comm.

    Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater

    Get PDF
    The sea-surface microlayer and bulk seawater can contain ice-nucleating particles (INPs) and these INPs can be emitted into the atmosphere. Our current understanding of the properties, concentrations, and spatial and temporal distributions of INPs in the microlayer and bulk seawater is limited. In this study we investigate the concentrations and properties of INPs in microlayer and bulk seawater samples collected in the Canadian Arctic during the summer of 2014. INPs were ubiquitous in the microlayer and bulk seawater with freezing temperatures in the immersion mode as high as −14 °C. A strong negative correlation (R = −0. 7, p = 0. 02) was observed between salinity and freezing temperatures (after correction for freezing depression by the salts). One possible explanation is that INPs were associated with melting sea ice. Heat and filtration treatments of the samples show that the INPs were likely heat-labile biological materials with sizes between 0.02 and 0.2 µm in diameter, consistent with previous measurements off the coast of North America and near Greenland in the Arctic. The concentrations of INPs in the microlayer and bulk seawater were consistent with previous measurements at several other locations off the coast of North America. However, our average microlayer concentration was lower than previous observations made near Greenland in the Arctic. This difference could not be explained by chlorophyll a concentrations derived from satellite measurements. In addition, previous studies found significant INP enrichment in the microlayer, relative to bulk seawater, which we did not observe in this study. While further studies are needed to understand these differences, we confirm that there is a source of INP in the microlayer and bulk seawater in the Canadian Arctic that may be important for atmospheric INP concentrations

    Dynamics of the Electro-Optic response of Blue Bronze

    Full text link
    We have studied the charge density wave (CDW) repolarization dynamics in blue bronze by applying square-wave voltages of different frequencies to the sample and measuring the changes in infrared transmittance, proportional to CDW strain. The frequency dependence of the electro-transmittance was fit to a modified harmonic oscillator response and the evolution of the parameters as functions of voltage, position, and temperature are discussed. Resonant frequencies decrease with distance from the current contacts, indicating that the resulting delays are intrinsic to the CDW with the strain effectively flowing from the contact. For a fixed position, the average relaxation time has a voltage dependence given by tau_0~V^-p, with 1<p<2. The temperature dependence of the fitting parameters shows that the dynamics are governed by both the force on the CDW and the CDW current: for a given force and position, both the relaxation and delay times are inversely proportional to the CDW current as temperature is varied. The long relaxation and delay times (~ 1 ms) suggest that the strain response involves the motion of macroscopic objects, presumably CDW phase dislocation lines.Comment: 36 pages, including 12 figures, submitted to Phys. Rev.

    Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06)

    Get PDF
    During the INTEX-B (Intercontinental Chemical Transport Experiment)/ MILAGRO (Megacities Initiative: Local and Global Research Observations) experiments in March 2006 and the associated IONS-06 (INTEX Ozonesonde Network Study; &lt;a href=&quot;http://croc.gsfc.nasa.gov/intexb/ions06.html&quot; target=&quot;_blank&quot;&gt;http://croc.gsfc.nasa.gov/intexb/ions06.html&lt;/a&gt;), regular ozonesonde launches were made over 15 North American sites. The soundings were strategically positioned to study inter-regional flows and meteorological interactions with a mixture of tropospheric O&lt;sub&gt;3&lt;/sub&gt; sources: local pollution; O&lt;sub&gt;3&lt;/sub&gt; associated with convection and lightning; stratosphere-troposphere exchange. The variability of tropospheric O&lt;sub&gt;3&lt;/sub&gt; over the Mexico City Basin (MCB; 19&amp;deg; N, 99&amp;deg; W) and Houston (30&amp;deg; N, 95&amp;deg; W) is reported here. MCB and Houston profiles displayed a double tropopause in most soundings and a subtropical tropopause layer with frequent wave disturbances, identified through O&lt;sub&gt;3&lt;/sub&gt; laminae as gravity-wave induced. Ozonesondes launched over both cities in August and September 2006 (IONS-06, Phase 3) displayed a thicker tropospheric column O&lt;sub&gt;3&lt;/sub&gt; (~7 DU or 15–20%) than in March 2006; nearly all of the increase was in the free troposphere. In spring and summer, O&lt;sub&gt;3&lt;/sub&gt; laminar structure manifested mixed influences from the stratosphere, convective redistribution of O&lt;sub&gt;3&lt;/sub&gt; and precursors, and O&lt;sub&gt;3&lt;/sub&gt; from lightning NO. Stratospheric O&lt;sub&gt;3&lt;/sub&gt; origins were present in 39% (MCB) and 60% (Houston) of the summer sondes. Comparison of summer 2006 O&lt;sub&gt;3&lt;/sub&gt; structure with summer 2004 sondes (IONS-04) over Houston showed 7% less tropospheric O&lt;sub&gt;3&lt;/sub&gt; in 2006. This may reflect a sampling contrast, August to mid-September 2006 instead of July-mid August 2004

    Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites

    Get PDF
    Despite the importance of ice-nucleating particles (INPs) for climate and precipitation, our understanding of these particles is far from complete. Here, we investigated INPs at three coastal marine sites in Canada, two at mid-latitude (Amphitrite Point and Labrador Sea) and one in the Arctic (Lancaster Sound). For Amphitrite Point, 23 sets of samples were analyzed, and for Labrador Sea and Lancaster Sound, one set of samples was analyzed for each location. At all three sites, the ice-nucleating ability on a per number basis (expressed as the fraction of aerosol particles acting as an INP) was strongly dependent on the particle size. For example, at diameters of around 0.2µm, approximately 1 in 106 particles acted as an INP at −25°C, while at diameters of around 8µm, approximately 1 in 10 particles acted as an INP at −25°C. The ice-nucleating ability on a per surface-area basis (expressed as the surface active site density, ns) was also dependent on the particle size, with larger particles being more efficient at nucleating ice. The ns values of supermicron particles at Amphitrite Point and Labrador Sea were larger than previously measured ns values of sea spray aerosols, suggesting that sea spray aerosols were not a major contributor to the supermicron INP population at these two sites. Consistent with this observation, a global model of INP concentrations under-predicted the INP concentrations when assuming only marine organics as INPs. On the other hand, assuming only K-feldspar as INPs, the same model was able to reproduce the measurements at a freezing temperature of −25°C, but under-predicted INP concentrations at −15°C, suggesting that the model is missing a source of INPs active at a freezing temperature of −15°C

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    Hydrodynamic Regulation of Monocyte Inflammatory Response to an Intracellular Pathogen

    Get PDF
    Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
    corecore