123 research outputs found

    Acute Disseminated Encephalomyelitis with Seizures and Myocarditis: A Fatal Triad.

    Get PDF
    Autoimmune pathology of acute disseminated encephalomyelitis (ADEM) is generally restricted to the brain. Our objective is to expand the phenotype of ADEM. A four-year-old girl was admitted to the pediatric emergency room of a university medical center five days after a common upper respiratory tract infection. Acute symptoms were fever, leg pain, and headaches. She developed meningeal signs, and her level of consciousness dropped rapidly. Epileptic seizure activity started, and she became comatose, requiring intubation and mechanical ventilation. Serial brain magnetic resonance imaging (MRI) illustrated the fulminant development of ADEM. Treatment escalation with high-dose corticosteroids, immunoglobulins, and plasma exchange did not lead to clinical improvement. On day ten, the patient developed treatment-refractory cardiogenic shock and passed away. The postmortem assessment confirmed ADEM and revealed acute lymphocytic myocarditis, likely explaining the acute cardiac failure. Human metapneumovirus and picornavirus were detected in the tracheal secrete by PCR. Data sources-medical chart of the patient. This case is consistent with evidence from experimental findings of an association of ADEM with myocarditis as a postinfectious systemic autoimmune response, with life-threatening involvement of the brain and heart

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described

    Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial

    Get PDF
    Background: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. Methods and Findings: We chose the inactivated influenza vaccine – a conventional licensed tetanus/influenza (TETAGRIP®) vaccine – to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. Conclusions: This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role

    Basic considerations in the dermatokinetics of topical formulations

    Get PDF
    Assessing the bioavailability of drug molecules at the site of action provides better insight into the efficiency of a dosage form. However, determining drug concentration in the skin layers following topical application of dermatological formulations is a great challenge. The protocols followed in oral formulations could not be applied for topical dosage forms. The regulatory agencies are considering several possible approaches such as tape stripping, microdialysis etc. On the other hand, the skin bioavailability assessment of xenobiotics is equally important for topical formulations in order to evaluate the toxicity. It is always possible that drug molecules applied on the skin surface may transport thorough the skin and reaches systemic circulation. Thus the real time measurement of molecules in the skin layer has become obligatory. In the last two decades, quite a few investigations have been carried out to assess the skin bioavailability and toxicity of topical/dermatological products. This review provides current understanding on the basics of dermatokinetics, drug depot formation, skin metabolism and clearance of drug molecules from the skin layers following application of topical formulations

    LASER PHYSICS LETTERS

    Get PDF
    Abstract: Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry. Normalized intensity, a.u

    PACS: 32.30.-r, 32.60.+i, 32.70

    Get PDF
    Abstract: We have measured light shifts, also known as AC Stark shifts, as a function of laser intensity in cold Rubidium atoms by observing sub-natural linewidth gain and loss features in the transmission spectrum of a weak probe beam passing through the atomic sample. The observed energy-level shifts for atoms in a magneto-optical trap (MOT) are found to be consistently higher than that obtained in optical molasses (i.e., when the magnetic field gradient in the MOT is turned off). Using a simple model of a multilevel Rubidium atom interacting with pump and probe beams, we have calculated the theoretical light shift as a function of intensity. A comparison of these calculated values with the light shift data obtained for molasses reveals good agreement between experiment and theory. Further, our model elucidates the role of the Zeeman shifts arising from the magnetic field gradient in the observed probe transmission spectrum for the MOT. A qualitative plot of the transmission spectrum of a probe beam through a fictitious sample of cold J = 1 → J = 2 atoms showing probe absorption at the sum of the pump frequency ω pump and δ , where δ is the difference of the light shifts between the |J = 1,mJ = 0 and the |J = 1,mJ = ± 1 ground state Zeeman sublevels. Probe gain is depicted at ω pump -δ . Se

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Nanotechnology in Dermatology

    Full text link
    corecore