97 research outputs found

    IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection

    Get PDF
    IL-21 is produced predominantly by activated CD4(+) T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (gamma(c)) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8(+) T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4(+) and CD8(+) T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R(-/-) mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R(-/-) T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.This work was supported by National Institutes of Health Grants R21 AI100766, R01 AI106725, and P01 AI073748

    Preclinical Development of an In Vivo BCG Challenge Model for Testing Candidate TB Vaccine Efficacy

    Get PDF
    There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-GuΓ©rin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection

    Protective Immunity to Listeria Monocytogenes Infection Mediated by Recombinant Listeria innocua Harboring the VGC Locus

    Get PDF
    In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the production of Type I Interferon's and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination

    The Two-Domain LysX Protein of Mycobacterium tuberculosis Is Required for Production of Lysinylated Phosphatidylglycerol and Resistance to Cationic Antimicrobial Peptides

    Get PDF
    The well-recognized phospholipids (PLs) of Mycobacterium tuberculosis (Mtb) include several acidic species such as phosphatidylglycerol (PG), cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG), is a component of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF)-lysyl-tRNA synthetase (lysU) protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows increased association with lysosome-associated membrane protein–positive vesicles, and it exhibits altered membrane potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and for survival of the pathogen upon infection

    Murine and Bovine Ξ³Ξ΄ T Cells Enhance Innate Immunity against Brucella abortus Infections

    Get PDF
    Ξ³Ξ΄ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human Ξ³Ξ΄ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of Ξ³Ξ΄ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRΞ΄βˆ’/βˆ’ mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRΞ³Ξ΄ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. Ξ³Ξ΄ T cells were the major source of IL-17 following infection and also produced IFN-Ξ³. Depletion of Ξ³Ξ΄ T cells from C57BL/6, IL-17RΞ±βˆ’/βˆ’, and GMCSFβˆ’/βˆ’ mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when Ξ³Ξ΄ T cells were depleted from IFN-Ξ³βˆ’/βˆ’ mice, enhanced susceptibility was observed. Neutralization of Ξ³Ξ΄ T cells in the absence of TNF-Ξ± did not further impair immunity. In the absence of TNF-Ξ± or Ξ³Ξ΄ T cells, B. abortus-infected mice showed enhanced IFN-Ξ³, suggesting that they augmented production to compensate for the loss of Ξ³Ξ΄ T cells and/or TNF-Ξ±. While the protective role of Ξ³Ξ΄ T cells was TNF-Ξ±-dependent, Ξ³Ξ΄ T cells were not the major source of TNF-Ξ± and activation of Ξ³Ξ΄ T cells following B. abortus infection was TNF-Ξ±-independent. Additionally, bovine TCRΞ³Ξ΄ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-Ξ³. Collectively, these results demonstrate Ξ³Ξ΄ T cells are important for early protection to B. abortus infections

    Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    Get PDF
    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data

    Dynamic Imaging of the Effector Immune Response to Listeria Infection In Vivo

    Get PDF
    Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ [CD8 superscript +] T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ [CD8 superscript +] T cells in effector sites.National Institutes of Health (U.S.) (Grant P01AI-071195

    Genome Scan of M. tuberculosis Infection and Disease in Ugandans

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFΞ±) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10βˆ’3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (pβ€Š=β€Š0.002). We also observed linkage at the nominal Ξ±β€Š=β€Š0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- pβ€Š=β€Š0.02), IL-1 complex (TB pβ€Š=β€Š0.01), IL12BR2 (TNFΞ± pβ€Š=β€Š0.006), IL12A (TB pβ€Š=β€Š0.02) and IFNGR2 (TNFΞ± pβ€Š=β€Š0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system

    Keratinocytes Determine Th1 Immunity during Early Experimental Leishmaniasis

    Get PDF
    Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L.) major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1Ξ², osteopontin, IL-4) and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen

    Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    Get PDF
    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate Ξ±Ξ²TCR+ cells, Ξ³Ξ΄TCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-Ξ³ is required for survival of SchuS4 infection since mice lacking IFN-Ξ³R succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-Ξ³and that Ξ³Ξ΄TCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection
    • …
    corecore