3,120 research outputs found
Cross-level Validation of Topological Quantum Circuits
Quantum computing promises a new approach to solving difficult computational
problems, and the quest of building a quantum computer has started. While the
first attempts on construction were succesful, scalability has never been
achieved, due to the inherent fragile nature of the quantum bits (qubits). From
the multitude of approaches to achieve scalability topological quantum
computing (TQC) is the most promising one, by being based on an flexible
approach to error-correction and making use of the straightforward
measurement-based computing technique. TQC circuits are defined within a large,
uniform, 3-dimensional lattice of physical qubits produced by the hardware and
the physical volume of this lattice directly relates to the resources required
for computation. Circuit optimization may result in non-intuitive mismatches
between circuit specification and implementation. In this paper we introduce
the first method for cross-level validation of TQC circuits. The specification
of the circuit is expressed based on the stabilizer formalism, and the
stabilizer table is checked by mapping the topology on the physical qubit
level, followed by quantum circuit simulation. Simulation results show that
cross-level validation of error-corrected circuits is feasible.Comment: 12 Pages, 5 Figures. Comments Welcome. RC2014, Springer Lecture Notes
on Computer Science (LNCS) 8507, pp. 189-200. Springer International
Publishing, Switzerland (2014), Y. Shigeru and M.Shin-ichi (Eds.
Electrophoretic mobility of a charged colloidal particle: A computer simulation study
We study the mobility of a charged colloidal particle in a constant
homogeneous electric field by means of computer simulations. The simulation
method combines a lattice Boltzmann scheme for the fluid with standard Langevin
dynamics for the colloidal particle, which is built up from a net of bonded
particles forming the surface of the colloid. The coupling between the two
subsystems is introduced via friction forces. In addition explicit counterions,
also coupled to the fluid, are present. We observe a non-monotonous dependence
of the electrophoretic mobility on the bare colloidal charge. At low surface
charge density we observe a linear increase of the mobility with bare charge,
whereas at higher charges, where more than half of the ions are co-moving with
the colloid, the mobility decreases with increasing bare charge.Comment: 15 pages, 8 figure
Transport Phenomena and Structuring in Shear Flow of Suspensions near Solid Walls
In this paper we apply the lattice-Boltzmann method and an extension to
particle suspensions as introduced by Ladd et al. to study transport phenomena
and structuring effects of particles suspended in a fluid near sheared solid
walls. We find that a particle free region arises near walls, which has a width
depending on the shear rate and the particle concentration. The wall causes the
formation of parallel particle layers at low concentrations, where the number
of particles per layer decreases with increasing distance to the wall.Comment: 14 pages, 14 figure
Sedimentation and Flow Through Porous Media: Simulating Dynamically Coupled Discrete and Continuum Phases
We describe a method to address efficiently problems of two-phase flow in the
regime of low particle Reynolds number and negligible Brownian motion. One of
the phases is an incompressible continuous fluid and the other a discrete
particulate phase which we simulate by following the motion of single
particles. Interactions between the phases are taken into account using locally
defined drag forces. We apply our method to the problem of flow through random
media at high porosity where we find good agreement to theoretical expectations
for the functional dependence of the pressure drop on the solid volume
fraction. We undertake further validations on systems undergoing gravity
induced sedimentation.Comment: 22 pages REVTEX, figures separately in uudecoded, compressed
postscript format - alternatively e-mail '[email protected]' for
hardcopies
Fluctuating lattice Boltzmann
The lattice Boltzmann algorithm efficiently simulates the Navier Stokes
equation of isothermal fluid flow, but ignores thermal fluctuations of the
fluid, important in mesoscopic flows. We show how to adapt the algorithm to
include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at
lattice level: this gives correct fluctuations for mass and momentum densities,
and for stresses, at all wavevectors . Unlike previous work, which recovers
FDT only as , our algorithm offers full statistical mechanical
consistency in mesoscale simulations of, e.g., fluctuating colloidal
hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter
STUDIES OF THE MECHANISM OF ACTION OF COBAMIDE COENZYMES
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73404/1/j.1749-6632.1964.tb45046.x.pd
Simulation of thermal conductivity and heat transport in solids
Using molecular dynamics (MD) with classical interaction potentials we
present calculations of thermal conductivity and heat transport in crystals and
glasses. Inducing shock waves and heat pulses into the systems we study the
spreading of energy and temperature over the configurations. Phonon decay is
investigated by exciting single modes in the structures and monitoring the time
evolution of the amplitude using MD in a microcanonical ensemble. As examples,
crystalline and amorphous modifications of Selenium and are
considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in
PR
Molecular line mapping of the giant molecular cloud associated with RCW 106 - II. Column density and dynamical state of the clumps
We present a fully sampled C^{18}O (1-0) map towards the southern giant
molecular cloud (GMC) associated with the HII region RCW 106, and use it in
combination with previous ^{13}CO (1-0) mapping to estimate the gas column
density as a function of position and velocity. We find localized regions of
significant ^{13}CO optical depth in the northern part of the cloud, with
several of the high-opacity clouds in this region likely associated with a
limb-brightened shell around the HII region G333.6-0.2. Optical depth
corrections broaden the distribution of column densities in the cloud, yielding
a log-normal distribution as predicted by simulations of turbulence.
Decomposing the ^{13}CO and C^{18}O data cubes into clumps, we find relatively
weak correlations between size and linewidth, and a more sensitive dependence
of luminosity on size than would be predicted by a constant average column
density. The clump mass spectrum has a slope near -1.7, consistent with
previous studies. The most massive clumps appear to have gravitational binding
energies well in excess of virial equilibrium; we discuss possible
explanations, which include magnetic support and neglect of time-varying
surface terms in the virial theorem. Unlike molecular clouds as a whole, the
clumps within the RCW 106 GMC, while elongated, appear to show random
orientations with respect to the Galactic plane.Comment: 17 pages, to appear in MNRA
- …