111 research outputs found

    Retour sur les archives algériennes

    Get PDF

    Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation

    Get PDF
    Abstract Background Clostridium difficile (CD), a spore-forming and toxin-producing bacterium, is the main cause for antibiotic-associated diarrhea in the elderly. Here we investigated CD colonization in novel in vitro fermentation models inoculated with immobilized elderly fecal microbiota and the effects of antibiotic treatments. Methods Two continuous intestinal PolyFermS models inoculated with different immobilized elder microbiota were used to investigate selected factors of colonization of CD in proximal (PC, model 1) and transverse-distal (TDC, model 1 and 2) colon conditions. Colonization of two CD strains of different PCR ribotypes, inoculated as vegetative cells (ribotype 001, model 1) or spores (ribotypes 001 and 012, model 2), was tested. Treatments with two antibiotics, ceftriaxone (daily 150 mg L−1) known to induce CD infection in vivo or metronidazole (twice daily 333 mg L−1) commonly used to treat CD, were investigated in TDC conditions (model 2) for their effects on gut microbiota composition (qPCR, 16S pyrosequencing) and activity (HPLC), CD spore germination and colonization, and cytotoxin titer (Vero cell assay). Results CD remained undetected after inoculating vegetative cells in PC reactors of model 1, but was shown to colonize TDC reactors of both models, reaching copy numbers of up to log10 8 mL−1 effluent with stable production of toxin correlating with CD cell numbers. Ceftriaxone treatment in TDC reactors showed only small effects on microbiota composition and activity and did not promote CD colonization compared to antibiotic-free control reactor. In contrast, treatment with metronidazole after colonization of CD induced large modifications in the microbiota and decreased CD numbers below the detection limit of the specific qPCR. However, a fast CD recurrence was measured only 2 days after cessation of metronidazole treatment. Conclusions Using our in vitro fermentation models, we demonstrated that stable CD colonization in TDC reactors can be induced by inoculating CD vegetative cells or spores without the application of ceftriaxone. Treatment with metronidazole temporarily reduced the counts of CD, in agreement with CD infection recurrence in vivo. Our data demonstrate that CD colonized an undisturbed microbiota in vitro, in contrast to in vivo observations, thus suggesting an important contribution of host-related factors in the protection against CD infection

    Disease burden of rotavirus gastroenteritis in children up to 5years of age in two Swiss cantons: paediatrician- and hospital-based surveillance

    Get PDF
    Rotavirus gastroenteritis (RV GE) is a leading cause of diarrhoea in young children. The purpose of this epidemiological surveillance was to measure the disease burden of RV GE among children <5years of age in two regions of Switzerland, Geneva and Lucerne. One hospital and four paediatricians participated per region. The surveillance lasted from December 2006 to June 2007. The population denominator for calculation of the RV GE incidence rate was the average of the overall study population <5years of age under surveillance during the surveillance period. At the study sites, 513 children with GE were presented. Stool sample was collected and examined in 341 cases, of which 130 were RV positive (38.1%). Informed consent to participate in the study was obtained for 113 RV positive subjects. The overall RV GE incidence rate was 0.97% in Lucerne [lower incidence interval (LCI), 0.71%; upper incidence interval (UCI), 1.2%] compared with 0.65 and in Geneva (LCI, 0.50%; UCI, 0.81%). Disease severity assessments using the Vescari score showed that the RV GE episodes were more severe in Lucerne than in Geneva (14.05 ± 3.05 vs 12.85 ± 2.87), which was confirmed by a higher hospitalisation rate in Lucerne at the study visit (82.9% vs 23.6%). More children had fever in Geneva than in Lucerne (42.9% vs 26.8%), and more children were hospitalised during the follow-up period in Geneva than in Lucerne (14.5% vs 2.5%). Genotyping of RV positive stool samples revealed that both G1 and P8 were the most prevalent types in both regions. There was a statistically significant difference in the distribution frequency of G1 between the two regions (p = 0.039). Assessment of health economic data confirmed the economic burden of RV GE episodes. In conclusion, RV GE episodes are a health burden as well as an economic burden also for the children in a developed country such as Switzerlan

    A proof of concept infant-microbiota associated rat model for studying the role of gut microbiota and alleviation potential of Cutibacterium avidum in infant colic

    Full text link
    Establishing the relationship between gut microbiota and host health has become a main target of research in the last decade. Human gut microbiota-associated animal models represent one alternative to human research, allowing for intervention studies to investigate causality. Recent cohort and in vitro studies proposed an altered gut microbiota and lactate metabolism with excessive H2_{2} production as the main causes of infant colic. To evaluate H2_{2} production by infant gut microbiota and to test modulation of gut colonizer lactose- and lactate-utilizer non-H2_{2}-producer, Cutibacterium avidum P279, we established and validated a gnotobiotic model using young germ-free rats inoculated with fecal slurries from infants younger than 3 months. Here, we show that infant microbiota-associated (IMA) rats inoculated with fresh feces from healthy (n = 2) and colic infants (n = 2) and fed infant formula acquired and maintained similar quantitative and qualitative fecal microbiota composition compared to the individual donor's profile. We observed that IMA rats excreted high levels of H2_{2}, which were linked to a high abundance of lactate-utilizer H2_{2}-producer Veillonella. Supplementation of C. avidum P279 to colic IMA rats reduced H2_{2} levels compared to animals receiving a placebo. Taken together, we report high H2_{2} production by infant gut microbiota, which might be a contributing factor for infant colic, and suggest the potential of C. avidum P279 in reducing the abdominal H2_{2} production, bloating, and pain associated with excessive crying in colic infants

    Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats

    Get PDF
    The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35mg Fe/kg diet; (5) Fe-depleted diet followed by 70mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequencing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35mg Fe/kg diet after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concentration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut healt

    Host biomarkers and combinatorial scores for the detection of serious and invasive bacterial infection in pediatric patients with fever without source.

    Get PDF
    BACKGROUND Improved tools are required to detect bacterial infection in children with fever without source (FWS), especially when younger than 3 years old. The aim of the present study was to investigate the diagnostic accuracy of a host signature combining for the first time two viral-induced biomarkers, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon Îł-induced protein-10 (IP-10), with a bacterial-induced one, C-reactive protein (CRP), to reliably predict bacterial infection in children with fever without source (FWS) and to compare its performance to routine individual biomarkers (CRP, procalcitonin (PCT), white blood cell and absolute neutrophil counts, TRAIL, and IP-10) and to the Labscore. METHODS This was a prospective diagnostic accuracy study conducted in a single tertiary center in children aged less than 3 years old presenting with FWS. Reference standard etiology (bacterial or viral) was assigned by a panel of three independent experts. Diagnostic accuracy (AUC, sensitivity, specificity) of host individual biomarkers and combinatorial scores was evaluated in comparison to reference standard outcomes (expert panel adjudication and microbiological diagnosis). RESULTS 241 patients were included. 68 of them (28%) were diagnosed with a bacterial infection and 5 (2%) with invasive bacterial infection (IBI). Labscore, ImmunoXpert, and CRP attained the highest AUC values for the detection of bacterial infection, respectively 0.854 (0.804-0.905), 0.827 (0.764-0.890), and 0.807 (0.744-0.869). Labscore and ImmunoXpert outperformed the other single biomarkers with higher sensitivity and/or specificity and showed comparable performance to one another although slightly reduced sensitivity in children < 90 days of age. CONCLUSION Labscore and ImmunoXpert demonstrate high diagnostic accuracy for safely discriminating bacterial infection in children with FWS aged under and over 90 days, supporting their adoption in the assessment of febrile patients

    Discovery of 9-Cyclopropylethynyl-2-((S)-1-[1,4]dioxan-2-ylmethoxy)-6,7-dihydropyrimido[6,1-a]isoquinolin-4-one (GLPG1205), a unique GPR84 negative allosteric modulator undergoing evaluation in a phase II clinical trial

    Get PDF
    GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5â€Č-O-[Îł-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein
    • 

    corecore