10 research outputs found
TrkA expression decreases the in vivo aggressiveness of C6 glioma cells
We stably expressed the nerve growth factor receptor trkA or a truncated trkA lacking the kinase domain (trkA delta) in a highly tumorigenic rat glioma cell line, C6. Survival of rats with large intrastriatal inocula of C6trkA cells was significantly longer than for rats bearing C6 or C6trkA delta cells. Histological studies revealed that C6trkA cells were much less invasive than C6 or C6trkA delta cells and had a greater rate of apoptosis. There was no apparent induction of differentiation of C6 cells by trkA. Therefore, unlike what is observed in neuroblastomas, trkA decreases tumorigenicity by modulating invasiveness and tumor cell death independent of inducing differentiation. This novel mechanism suggests a new therapeutic strategy for malignant gliomas
The neurotrophin receptor, gp75, forms a complex with the receptor tyrosine kinase TrkA
The high-affinity NGF receptor is thought to be a complex of two receptors , gp75 and the tyrosine kinase TrkA, but direct biochemical evidence for such an association had been lacking. In this report, we demonstrate the existence of such a gp75-TrkA complex by a copatching technique. Gp75 on the surface of intact cells is patched with an anti-gp75 antibody and fluorescent secondary antibody, the cells are then fixed to prevent further antibody-induced redistributions, and the distribution of TrkA is probed with and anti-TrkA antibody and fluorescent secondary antibody. We utilize a baculovirus-insect cell expression of wild-type and mutated NGF receptors. TrkA and gp75 copatch in both the absence and presence of NGF. The association is specific, since gp75 does not copatch with other tyrosine kinase receptors, including TrkB, platelet-derived growth factor receptor-beta, and Torso (Tor). To determine which domains of TrkA are required for copatching, we used a series of TrkA-Tor chimeric receptors and show that the extracellular domain of TrkA is sufficient for copatching with gp75. A chimeric receptor with TrkA transmembrane and intracellular domains show partial copatching with gp75. Deletion of the intracellular domain of gp75 decreases but does not eliminate copatching. A point mutation which inactivates the TrkA kinase has no effect on copatching, indicating that this enzymatic activity is not required for association with gp75. Hence, although interactions between the gp75 and TrkA extracellular domains are sufficient for complex formation, interactions involving other receptor domains also play a role
Retrograde axonal transport and lesion-induced upregulation of the TrkA high-affinity NGF receptor
Long-term physiological responses of nerve growth factor (NGF) and other neurotrophins require gene regulation and likely depend on retrograde axonal transport of NGF or a signaling molecule activated by ligand-receptor interaction. The low-affinity neurotrophin receptor p75LANR is retrogradely transported, but this receptor is not sufficient for NGF-dependent cell survival or differentiation. In this study we examined the distribution and transport of the TrkA NGF receptor using two anti-peptide polyclonal antibodies and a monoclonal antibody, all of which are TrkA specific. We find that (1) in the adult rat brain TrkA-like immunoreactivity is similar with all antibodies in striatal and basal forebrain neurons, (2) TrkA is upregulated in neuronal and nonneuronal cells near the sites of injury, and (3) TrkA immunoreactivity builds up within the proximal and distal segments of transected fimbrial axons, which is consistent with its transport in the anterograde and retrograde directions. Thus, TrkA may itself be, or be a component of, the neurotrophic intraaxonal messenger by which NGF regulates gene expression in sensitive neurons
Embryonic precursor cells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3, and CNTF
Epidermal growth factor (EGF)-treated neurosphere cultures from embryonal striatum contain multipotential cells capable of neuronal, astrocytic, and oligodendroglial differentiation. In this study, we tested whether these neural precursor cells differentiate in the presence of neurotrophic factors. We first assayed neurosphere cells for expression of neurotrophin receptors. TrkA, TrkB, TrkC, and gp75 were detected by immunofluorescence microscopy in 60-80% of cells. In addition, the ciliary neurotrophic factor receptor alpha was expressed in 50-60% of cells. In the presence of the mitogen, EGF, treatment of stem cells with neurotrophic factors had no apparent effect. Removal of EGF from cells resulted in cessation of cell proliferation and pronounced astrocytic (glial fibrillary acidic protein+) differentiation. Neuronal (neurofilament+) and oligodendroglial (galactocerebroside+) cells appeared in cultures treated with neurotrophic factors. Nerve growth factor (NGF) resulted in bipolar neuronal cells, and brain-derived neurotrophic factor led to multipolar neuronal cells. Treatment with neurotrophin-3 or ciliary neurotrophic factor resulted in bipolar neuronal cells and oligodendrocytes. Neuronal differentiation in the presence of NGF was enhanced by extracellular matrix, and the resulting neuronal cells expressed choline acetyltransferase and, to a lesser degree, tyrosine hydroxylase. These studies demonstrate that neurotrophic factors influence the fates of these multipotential precursor cells. Indeed, the true utility of multipotential precursor cells is the production of different types of cells in different situations. Local cues, such as neurotrophic factors and extracellular matrix, may regulate production of different types of neural cells during development or in response to other stimuli, such as injury
Novel functional interactions between Trk kinase and p75 neurotrophin receptor in neuroblastoma cells
To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis
A novel, nerve growth factor-activated pathway involving nitric oxide, p53, and p21WAF1 regulates neuronal differentiation of PC12 cells
During development, neuronal differentiation is closely coupled with cessation of proliferation. We use nerve growth factor (NGF)-induced differentiation of PC12 pheochromocytoma cells as a model and find a novel signal transduction pathway that blocks cell proliferation. Treatment of PC12 cells with NGF leads to induction of nitric oxide synthase (NOS) (Peunova, N., and Enikolopov, G. (1995) Nature 375, 68-73). The resulting nitric oxide (NO) acts as a second messenger, activating the p21(WAF1) promoter and inducing expression of p21(WAF1) cyclin-dependent kinase inhibitor. NO activates the p21(WAF1) promoter by p53-dependent and p53-independent mechanisms. Blocking production of NO with an inhibitor of NOS reduces accumulation of p53, activation of the p21(WAF1) promoter, expression of neuronal markers, and neurite extension. To determine whether p21(WAF1) is required for neurite extension, we prepared a PC12 line with an inducible p21(WAF1) expression vector. Blocking NOS with an inhibitor decreases neurite extension, but induction of p21(WAF1) with isopropyl-1-thio-beta-D-galactopyranoside restored this response. Levels of p21(WAF1) induced by isopropyl-1-thio-beta-D-galactopyranoside were similar to those induced by NGF. Therefore, we have identified a signal transduction pathway that is activated by NGF; proceeds through NOS, p53, and p21(WAF1) to block cell proliferation; and is required for neuronal differentiation by PC12 cells
A role for nuclear PTEN in neuronal differentiation
Mutations of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a protein and lipid phosphatase, have been associated with gliomas, macrocephaly, and mental deficiencies. We have assessed PTEN\u27s role in the nervous system and find that PTEN is expressed in mouse brain late in development, starting at approximately postnatal day 0. In adult brain, PTEN is preferentially expressed in neurons and is especially evident in Purkinje neurons, olfactory mitral neurons, and large pyramidal neurons. To analyze the function of PTEN in neuronal differentiation, we used two well established model systems-pheochromocytoma cells and cultured CNS stem cells. PTEN is expressed during neurotrophin-induced differentiation and is detected in both the nucleus and cytoplasm. Suppression of PTEN levels with antisense oligonucleotides does not block initiation of neuronal differentiation. Instead, PTEN antisense leads to death of the resulting, immature neurons, probably during neurite extension. In contrast, PTEN is not required for astrocytic differentiation. These observations indicate that PTEN acts at multiple sites in the cell, regulating the transition of differentiating neuroblasts to postmitotic neurons