6 research outputs found

    Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging

    Get PDF
    Objective: The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging. Methods: In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7). Results: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases. Conclusions: These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making

    Clinical and genetic characteristics for the Urofacial Syndrome (UFS)

    No full text
    Abstract: The Urofacial (Ochoa) Syndrome (UFS) is a rare autosomal recessive disorder and over 100 patients have been reported thus far. UFS is characterized by the abnormal facial expression and dysfunctional voiding. The patients show a peculiar distortion of the facial expression (grimacing as if in pain or sadness when they tried to smile or laugh) along with urinary tract infection, enuresis, vesicoureteral reflux and hydronephrosis without any underlying neurological lesion and previous urinary obstruction. Some patients are also noted with nocturnal lagophthalmos. Until 2010, HPSE2, the gene encodes Heparanse 2 on chromosome 10, was thought to be the only culprit gene for this syndrome. However, another criminal gene, LRIG2, which encodes leucine-rich repeats and immunoglobulin-like domains 2, was also come into the light in 2012. Studies for dissecting the biological functions of HPSE2 and LRIG2 in urinary abnormalities are ongoing. In this minireview, we will update the discovery of novel clinical manifestations relevant to this syndrome and discuss with focus for the impact of HPSE2 on voiding dysfunction

    Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations.

    No full text
    CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype. We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations. Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism. We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome

    Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations

    No full text
    International audiencePurpose:CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype.Methods:We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations.Results:Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism.Conclusion:We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome
    corecore