54 research outputs found

    Global patterns of extinction risk and conservation needs for Rodentia and Eulipotyphla

    Get PDF
    AIM: To explore global patterns in spatial aggregations of species richness, vulnerability and data deficiency for Rodentia and Eulipotyphla. To evaluate the adequacy of existing protected area (PA) network for these areas. To provide a focus for local conservation initiatives. LOCATION: Global. METHODS: Total species, globally threatened (GT) species, and Data Deficient (DD) species richness were calculated for a 1° resolution grid. Correspondence analyses between global species richness against GT species richness were performed. To assess PA network adequacy, a correspondence analysis was conducted to identify areas of high richness and GT species richness that have poor protection. RESULTS: Six hotspots were identified for GT eulipotyphlans, encompassing 40% of GT species. Three of these contain higher numbers of GT species than would be expected based on their overall species richness. Ten priority regions were identified for GT rodents, which together contain 34% of all GT species. Six contain higher numbers of GT rodent species than would be expected based on their overall species richness. For DD species, 15% of DD eulipotyphlans were represented within three priority regions, whereas 18 were identified for rodents, capturing 53% of all DD species. Areas containing lower numbers of protected GT eulipotyphlan species than expected include Mexico; Cameroonian Highlands; Albertine Rift; Tanzania; Kenya; Ethiopia; western Asia; India; and Sri Lanka. Areas containing lower numbers of protected GT rodent species than expected are Borneo, Sumatra and Sulawesi. Five eulipotyphlans and 44 rodents have ranges which fall completely outside of PAs. MAIN CONCLUSION: Rodentia and Eulipotyphla priority regions should be considered separately to one another and to other mammals. This analysis approach allows us to pinpoint and delineate geographical areas which represent key regions at a global level for rodents and eulipotyphlans, in order to facilitate conservation, field research and capacity building at a local level

    Uso de habtats por pequenos mamíferos não-voadores no cerrado do Brasil central

    Get PDF
    Non-volant small mammals are organisms capable of yielding precise information on richness, abundance and species composition variations related to the use of habitats. The aim of this research was to compare these variations in Cerrado sensu stricto, Palm Forest, Gallery Forest and Rocky Field. From May 1999 to February 2000, we surveyed non-volant small mammals (hence small mammals) in Serra das Araras Ecological Station. We captured 218 individuals and recaptured 62 individuals, belonging to 21 taxa, 13 rodents and eight marsupials, in a total of 13200 trap-nights. Capture success was 1.7%. We observed higher richness of small mammals in forested areas (Gallery Forest and Palm Forest) than in open areas (Rocky Field and Cerrado sensu stricto). The Palm Forest had the highest richness of marsupials, possibly due to the quality of a specific niche. The Rocky Field had the smallest richness, but with very high abundance of few species, mainly Thrichomys pachyurus and Monodelphis domestica. Forest habitats had similar species composition. The open habitats, Cerrado sensu stricto and Rocky Field, had a distinct species composition between them, and also when compared to forested areas. Different species are exclusive or showed preference for specific habitats. The protection of horizontally heterogeneous biomes, such as Cerrado, has a fundamental importance to the maintenance of the regional diversity of the small mammal community of Central Brazil

    Effect of Parathion-Methyl on Amazonian Fish and Freshwater Invertebrates: A Comparison of Sensitivity with Temperate Data

    Get PDF
    Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC50–96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC50 values ranging from 2900 to 7270 μg/L for fish and from 0.3 to 319 μg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems

    Experimental infection parameters in Galea spixii (Rodentia: Caviidae) with Leishmania infantum chagasi

    Full text link
    In order to better understand the epidemiological transmission network of leishmaniasis, an endemic disease in Northeast Brazil, we investigated the susceptibility of Spix yellow-toothed cavies (Galea spixii) to the Leishmania infantum chagasi parasite. Nine cavies were experimentally infected, separated into three groups and monitored at 30, 90 and 180 days, respectively. Amastigotes were identified in the spleen slides of two cavies killed 180 days after infection. Antibodies against the L. i. chagasi were identified in one of the cavies. This demonstrates that G. spixii is in fact capable of maintaining a stable infection by L. i. chagasi without alterations in biochemical and hematological parameters of the host and without perceivable micro and macroscopic lesions

    Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics

    Get PDF
    Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics
    corecore