14 research outputs found

    Charakterizace faktorů podílejících se na regulaci intracelulární dynamiky vybraných auxinových přenašečů

    Get PDF
    Souhrn U rostlin je známo že mají schopnost nasměrovat svoje části, jak prýt, tak kořeny, pro zabezpečení maximálního zisku energie a příjmu živin, ale taky pro možnost vyhnout se toxickým podmínkám pro svůj růst. Regulace směru růstu, který zabezpečuje přežití rostliny, závisí na schopnosti rostlinných orgánů růst asymetricky. Asymetrický růst je regulován na buněčné úrovni na základě exogenních i interních signálů. Již v roce 1880 Darwin popsal tropismy a směrový růst na makroskopické úrovni; v současnosti je nevyhnutelné pochopit molekulární mechanismy, které zajišťují efektivní regulaci směrového růstu rostlin. V rámci svého studia jsem se zaměřil na mechanismy regulace směru růstu u rostlin. Kořen je komplexní trojrozměrný objekt, který stále upravuje svůj tvar a směr růstu. Vzhledem k tomu, že kořen potřebuje zvětšovat svůj povrch, aby byl schopen zajistit přísun živin a vody, je důležité pochopit, jak je kořen schopen adaptaci na konstantně se měnící růstové podmínky způsobené prorůstáním dál do půdy zvládnout. Pokud kořen není schopen prorůstat půdou efektivně kvůli silnému mechanickému odporu nebo nedostatku živin, pak je ovlivněn i růst prýtu. Optimální růst kořene je komplexní proces, na kterém se podílí rozmanitá spleť signálních drah, které jsou ovlivněny rostlinnými hormony, cukry, flavonoidy...Plants are known to adjust the orientation of their organs, shoot and root, to ensure maximal energy generation and nutrient uptake, but also to avoid toxic growth conditions. Directional growth regulation depends on asymmetric plant organ growth and it is crucial to ensure plant survival. It is orchestrated on cellular level in concert with exogenous and intrinsic signals. Even though tropistic growth responses of plants were described by Darwin on macroscopic level already in 1880, now it is necessary to understand molecular mechanisms that underpin efficient modulation of directional plant growth. During my studies I focused on factors that modulate directional root growth regulation. The root is a complex, three-dimensional object, which continuously modifies its shape and growth path. Since the root needs to expand its surface to supply the plant with nutrients and water, it is important to understand how roots cope with changing growth conditions while exploring the soil. If the root cannot manage to grow through soil efficiently, mechanical impedance and lack of resources will also restrict shoot growth as well. Manifold signaling pathways coordinate the complex processes that underpin efficient root growth, including those modulated by phytohormones, sugars, flavonoids and other...Katedra experimentální biologie rostlinDepartment of Experimental Plant BiologyPřírodovědecká fakultaFaculty of Scienc

    Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution

    Get PDF
    Coordination of plant development requires modulation of growth responses that are under control of the phytohormone auxin. PIN-FORMED plasma membrane proteins, involved in intercellular transport of the growth regulator, are key to the transmission of such auxin signals and subject to multilevel surveillance mechanisms, including reversible post-translational modifications. Apart from well-studied PIN protein modifications, namely phosphorylation and ubiquitylation, no further post-translational modifications have been described so far. Here, we focused on root-specific Arabidopsis PIN2 and explored functional implications of two evolutionary conserved cysteines, by a combination of in silico and molecular approaches. PIN2 sequence alignments and modeling predictions indicated that both cysteines are facing the cytoplasm and therefore would be accessible to redox status-controlled modifications. Notably, mutant pin2C−A alleles retained functionality, demonstrated by their ability to almost completely rescue defects of a pin2 null allele, whereas high resolution analysis of pin2C−A localization revealed increased intracellular accumulation, and altered protein distribution within plasma membrane micro-domains. The observed effects of cysteine replacements on root growth and PIN2 localization are consistent with a model in which redox status-dependent cysteine modifications participate in the regulation of PIN2 mobility, thereby fine-tuning polar auxin transport

    Characterization of factors participating in regulation of intracellular dynamics of auxin carriers

    No full text
    Plants are known to adjust the orientation of their organs, shoot and root, to ensure maximal energy generation and nutrient uptake, but also to avoid toxic growth conditions. Directional growth regulation depends on asymmetric plant organ growth and it is crucial to ensure plant survival. It is orchestrated on cellular level in concert with exogenous and intrinsic signals. Even though tropistic growth responses of plants were described by Darwin on macroscopic level already in 1880, now it is necessary to understand molecular mechanisms that underpin efficient modulation of directional plant growth. During my studies I focused on factors that modulate directional root growth regulation. The root is a complex, three-dimensional object, which continuously modifies its shape and growth path. Since the root needs to expand its surface to supply the plant with nutrients and water, it is important to understand how roots cope with changing growth conditions while exploring the soil. If the root cannot manage to grow through soil efficiently, mechanical impedance and lack of resources will also restrict shoot growth as well. Manifold signaling pathways coordinate the complex processes that underpin efficient root growth, including those modulated by phytohormones, sugars, flavonoids and other..

    Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination

    No full text
    The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status

    Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity

    Get PDF
    We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m−2; light period 04:00–22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m−2, 420 µmol m−2 s−1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night.publishedVersio

    Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth

    No full text
    Plant roots are very plastic and can adjust their tissue organization and cell appearance during abiotic stress responses. Previous studies showed that direct root illumination and sugar supplementation mask root growth phenotypes and traits. Sugar and light signaling where further connected to changes in auxin biosynthesis and distribution along the root. Auxin signaling underpins almost all processes involved in the establishment of root traits, including total root length, gravitropic growth, root hair initiation and elongation. Root hair plasticity allows maximized nutrient uptake and therefore plant productivity, and root hair priming and elongation require proper auxin availability. In the presence of sucrose in the growth medium, root hair emergence is partially rescued, but the full potential of root hair elongation is lost. With our work we describe a combinatory study showing to which extent light and sucrose are antagonistically influencing root length, but additively affecting root hair emergence and elongation. Furthermore, we investigated the impact of the loss of PIN-FORMED2, an auxin efflux carrier mediating shootward auxin transporter, on the establishment of root traits in combination with all growth conditions

    Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination

    No full text
    The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status

    Throttling Growth Speed: Evaluation of aux1-7 Root Growth Profile by Combining D-Root system and Root Penetration Assay

    No full text
    Directional root growth control is crucial for plant fitness. The degree of root growth deviation depends on several factors, whereby exogenous growth conditions have a profound impact. The perception of mechanical impedance by wild-type roots results in the modulation of root growth traits, and it is known that gravitropic stimulus influences distinct root movement patterns in concert with mechanoadaptation. Mutants with reduced shootward auxin transport are described as being numb towards mechanostimulus and gravistimulus, whereby different growth conditions on agar-supplemented medium have a profound effect on how much directional root growth and root movement patterns differ between wild types and mutants. To reduce the impact of unilateral mechanostimulus on roots grown along agar-supplemented medium, we compared the root movement of Col-0 and auxin resistant 1-7 in a root penetration assay to test how both lines adjust the growth patterns of evenly mechanostimulated roots. We combined the assay with the D-root system to reduce light-induced growth deviation. Moreover, the impact of sucrose supplementation in the growth medium was investigated because exogenous sugar enhances root growth deviation in the vertical direction. Overall, we observed a more regular growth pattern for Col-0 but evaluated a higher level of skewing of aux1-7 compared to the wild type than known from published data. Finally, the tracking of the growth rate of the gravistimulated roots revealed that Col-0 has a throttling elongation rate during the bending process, but aux1-7 does not

    Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity

    Get PDF
    We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m−2; light period 04:00–22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m−2, 420 µmol m−2 s−1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night

    Hormonomic Changes Driving the Negative Impact of Broomrape on Plant Host Interactions with Arbuscular Mycorrhizal Fungi

    No full text
    Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system
    corecore