445 research outputs found

    Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling

    Get PDF
    In this study we show how hydrogen and helium lines modelling can be used to make a diagnostic of active and eruptive prominences. One motivation for this work is to identify the physical conditions during prominence activation and eruption. Hydrogen and helium lines are key in probing different parts of the prominence structure and inferring the plasma parameters. However, the interpretation of observations, being either spectroscopic or obtained with imaging, is not straightforward. Their resonance lines are optically thick, and the prominence plasma is out of local thermodynamic equilibrium due to the strong incident radiation coming from the solar disk. In view of the shift of the incident radiation occurring when the prominence plasma flows radially, it is essential to take into account velocity fields in the prominence diagnostic. Therefore we need to investigate the effects of the radial motion of the prominence plasma on hydrogen and helium lines. The method that we use is the resolution of the radiative transfer problem in the hydrogen and helium lines out of local thermodynamic equilibrium. We study the variation of the computed integrated intensities in H and He lines with the radial velocity of the prominence plasma. We can confirm that there exist suitable lines which can be used to make a diagnostic of the plasma in active and eruptive prominences in the presence of velocity fields.Comment: 5 pages, 4 colour figure

    Radiative transfer in cylindrical threads with incident radiation. VI. A hydrogen plus helium system

    Get PDF
    Context: Spectral lines of helium are commonly observed on the Sun. These observations contain important information about physical conditions and He/H abundance variations within solar outer structures. Aims: The modeling of chromospheric and coronal loop-like structures visible in hydrogen and helium lines requires the use of appropriate diagnostic tools based on NLTE radiative tranfer in cylindrical geometry. Methods: We use iterative numerical methods to solve the equations of NLTE radiative transfer and statistical equilibrium of atomic level populations. These equations are solved alternatively for hydrogen and helium atoms, using cylindrical coordinates and prescribed solar incident radiation. Electron density is determined by the ionization equilibria of both atoms. Two-dimensional effects are included. Results: The mechanisms of formation of the principal helium lines are analyzed and the sources of emission inside the cylinder are located. The variations of spectral line intensities with temperature, pressure, and helium abundance, are studied. Conclusions: The simultaneous computation of hydrogen and helium lines, performed by the new numerical code, allows the construction of loop models including an extended range of temperatures

    Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet

    Get PDF
    <b>Context</b>: Extreme ultraviolet resonance lines of neutral and ionised helium observed in prominences are difficult to interpret as the prominence plasma is optically thick at these wavelengths. If mass motions are taking place, as is the case in active and eruptive prominences, the diagnostic is even more complex. <b>Aims</b>: We aim at studying the effect of radial motions on the spectrum emitted by moving prominences in the helium resonance lines and at facilitating the interpretation of observations, in order to improve our understanding of these dynamic structures. <b>Methods</b>: We develop our non-local thermodynamic equilibrium radiative transfer code formerly used for the study of quiescent prominences. The new numerical code is now able to solve the statistical equilibrium and radiative transfer equations in the non-static case by using velocity-dependent boundary conditions for the solution of the radiative transfer problem. This first study investigates the effects of different physical conditions (temperature, pressure, geometrical thickness) on the emergent helium radiation. <b>Results</b>: The motion of the prominence plasma induces a Doppler dimming effect on the resonance lines of HE i and HE ii. The velocity effects are particularly important for the HE ii λ 304 Å line as it is mostly formed by resonant diffusion of incident radiation under prominence conditions. The HE i resonance lines at 584 and 537 Å also show some sensitivity to the motion of the plasma, all the more when thermal emission is not too important in these lines. We also show that it is necessary to consider partial redistribution in frequency for the scattering of the incident radiation. Conclusions.This set of helium lines offers strong diagnostic possibilities that can be exploited with the SOHO spectrometers and with the EIS spectrometer on board the Hinode satellite. The addition of other helium lines and of lines from other elements (in particular hydrogen) in the diagnostics will further enhance the strength of the method

    Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines

    Get PDF
    We present the first comparison of profiles of H et He resonance lines observed by SUMER with theoretical profiles computed with our non-LTE radiative transfer code. We use the H I Lyman-beta, H I Lyman-epsilon, and He I 584 A lines. Our code allows us to obtain the plasma parameters in prominences in conjunction with a multi-line, multi-element set of observations. The plasma temperature in the prominence core is ~ 8600 K and the pressure is 0.03 dyn/cm^2. The Ly-beta line is formed in a higher temperature region (more than 11000 K).Comment: 2 pages, 2 color figures. Proceedings of SF2A, Semaine de l'Astrophysique Francaise, Journees de la SF2A 2006, Pari

    Earth's Inner Core dynamics induced by the Lorentz force

    Get PDF
    Seismic studies indicate that the Earth's inner core has a complex structure and exhibits a strong elastic anisotropy with a cylindrical symmetry. Among the various models which have been proposed to explain this anisotropy, one class of models considers the effect of the Lorentz force associated with the magnetic field diffused within the inner core. In this paper we extend previous studies and use analytical calculations and numerical simulations to predict the geometry and strength of the flow induced by the poloidal component of the Lorentz force in a neutrally or stably stratified growing inner core, exploring also the effect of different types of boundary conditions at the inner core boundary (ICB). Unlike previous studies, we show that the boundary condition that is most likely to produce a significant deformation and seismic anisotropy is impermeable, with negligible radial flow through the boundary. Exact analytical solutions are found in the case of a negligible effect of buoyancy forces in the inner core (neutral stratification), while numerical simulations are used to investigate the case of stable stratification. In this situation, the flow induced by the Lorentz force is found to be localized in a shear layer below the ICB, which thickness depends on the strength of the stratification, but not on the magnetic field strength. We obtain scaling laws for the thickness of this layer, as well as for the flow velocity and strain rate in this shear layer as a function of the control parameters, which include the magnitude of the magnetic field, the strength of the density stratification, the viscosity of the inner core, and the growth rate of the inner core. We find that the resulting strain rate is probably too small to produce significant texturing unless the inner core viscosity is smaller than about 101210^{12} Pa.s.Comment: submitted to Geophysical Journal Internationa

    EUV lines observed with EIS/Hinode in a solar prominence

    Get PDF
    <b>Context</b>. During a multi-wavelength observation campaign with Hinode and ground-based instruments, a solar prominence was observed for three consecutive days as it crossed the western limb of the Sun in April 2007.<p></p> <b>Aims.</b> We report on observations obtained on 26 April 2007 using EIS (Extreme ultraviolet Imaging Spectrometer) on Hinode. They are analysed to provide a qualitative diagnostic of the plasma in different parts of the prominence.<p></p> <b>Methods</b>. After correcting for instrumental effects, the rasters at different wavelengths are presented. Several regions within the same prominence are identified for further analysis. Selected profiles for lines with formation temperatures between log (T) = 4.7 and log (T) = 6.3, as well as their integrated intensities, are given. The profiles of coronal, transition region, and He ii lines are discussed. We pay special attention to the He ii line, which is blended with coronal lines.<p></p> <b>Results.</b> Some quantitative results are obtained by analysing the line profiles. They confirm that depression in EUV lines can be interpreted in terms of two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He ii line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking to the coronal lines blended with the He ii line. We estimate the contribution of the He ii 256.32 Å line to the He ii raster image to vary between ∼44% and 70% of the raster’s total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He ii 256 Å line are consistent with the theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate of the central temperature of 8700 K, a central pressure of 0.33 dyn cm<sup>-2</sup>, and a column mass of 2.5 × 10<sup>-4</sup> g cm<sup>-2</sup>. The corresponding theoretical hydrogen column density (10<sup>20</sup> cm<sup>-2</sup>) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 Å. The non-LTE calculations indicate that the He ii 256.32 Å line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation.<p></p&gt

    Structure of prominence legs: Plasma and magnetic field

    Get PDF
    We investigate the properties of a `solar tornado' observed on 15 July 2014, and aim to link the behaviour of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the IRIS spectrograph and the Hinode/SOT instrument. Along with spectropolarimetry provided by the THEMIS telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca II (SOT), are not visible in the IRIS Mg II slit-jaw images. This is explained by the large optical thickness of the structures in Mg II which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of +/- 10 km/s in the tornado-like structure. Between the two legs we see loops in Mg II, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures which are unrelated to the loops. This kind of `tornado' scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.Comment: 13 pages, 14 figures, one tabl

    Modelling of helium spectrum in solar prominences

    Get PDF
    No abstract available

    Hα Doppler shifts in a tornado in the solar corona

    Get PDF
    Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims. The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods. The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results. The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10′′ wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions. The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado
    corecore