27 research outputs found
Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry
Sea level anomalies measured by the altimeters aboard the TOPEX/Poseidon and ERS satellites for the periods 1993–2001 and 1997–2001, respectively, are used to investigate the eddy field in the subpolar North Atlantic and in the Labrador Sea. A quadratic correction of the obtained eddy kinetic energy (EKE) with respect to significant wave height is applied that led to an increased correlation between moored and altimetric EKE in the central Labrador Sea. The mean EKE field shows higher levels associated with the main currents and a strong seasonality in the Labrador Sea. The annual cycle of the EKE shows a propagation of West Greenland Current (WGC) EKE into the central Labrador Sea with a mean southward propagation speed of about 3 cm s−1, while the EKE maximum in the Labrador Current is well separated from the interior by local EKE minima. The interannual variability of the EKE in the Labrador Sea shows distinct regional differences. In the WGC region, strong early winter maxima are found during 1993 and 1997–1999. In the central Labrador Sea, maxima are found during March/April 1993–1995 and 1997. Variations in the annual cycle of the WGC EKE are observed: While there is a weak annual cycle in the WGC region during 1994–1996 with more continuous EKE generation, during 1997–2000, there is a strong seasonal cycle with maximum EKE during January and particularly low EKE during summer. The propagation of WGC EKE into the central Labrador Sea is enhanced during 1997–2000, leading to a long persistence of EKE in the central Labrador Sea. During 1993–1995 and 1997 the central Labrador Sea EKE almost instantaneously increased during March/April, followed, in the earlier years, by a relatively fast destruction of the winterly generated EKE
Origin and Composition of Seasonal Labrador Sea Freshwater
The depth of winter convection in the central Labrador Sea is strongly influenced by the prevailing stratification in late summer. For this late summer stratification salinity is as important as temperature, and in the upper water layers salinity even dominates. To analyze the source of the spring and summer freshening in the central region, seasonal freshwater cycles have been constructed for the interior Labrador Sea, the West Greenland Current, and the Labrador Current. It is shown that none of the local freshwater sources is responsible for the spring–summer freshening in the interior, which appears to occur in two separate events in April to May and July to September. Comparing the timing and volume estimates of the seasonal freshwater cycles of the boundary currents with the central Labrador Sea helps in understanding the origin of the interior freshwater signals. The first smaller pulse cannot be attributed clearly to either of the boundary currents. The second one is about three times stronger and supplies 60% of the seasonal summer freshwater. Transport estimates and calculated mixing properties provide evidence that its source is the West Greenland Current. The finding implies a connection also on interannual time scales between Labrador Sea surface salinity and freshwater sources in the West Greenland Current and farther upstream in the East Greenland Current. The freshwater input from the West Greenland Current thus also is the likely pathway for the known modulation of Labrador Sea Water mass formation by freshwater export from the Arctic (via the East Greenland Current), which implies some predictability on longer time scales
Changes in the CFC inventories and formation rates of upper Labrador Sea Water, 1997-2001
Chlorofluorocarbon (component CFC-11) and hydrographic data from 1997, 1999, and 2001 are presented to track the large-scale spreading of the Upper Labrador Sea Water (ULSW) in the subpolar gyre of the North Atlantic Ocean. ULSW is CFC rich and comparatively low in salinity. It is located on top of the denser “classical” Labrador Sea Water (LSW), defined in the density range σΘ = 27.68–27.74 kg m−3. It follows spreading pathways similar to LSW and has entered the eastern North Atlantic. Despite data gaps, the CFC-11 inventories of ULSW in the subpolar North Atlantic (40°–65°N) could be estimated within 11%. The inventory increased from 6.0 ± 0.6 million moles in 1997 to 8.1 ± 0.6 million moles in 1999 and to 9.5 ± 0.6 million moles in 2001. CFC-11 inventory estimates were used to determine ULSW formation rates for different periods. For 1970–97, the mean formation rate resulted in 3.2–3.3 Sv (Sv ≡ 106 m3 s−1). To obtain this estimate, 5.0 million moles of CFC-11 located in 1997 in the ULSW in the subtropical/tropical Atlantic were added to the inventory of the subpolar North Atlantic. An estimate of the mean combined ULSW/LSW formation rate for the same period gave 7.6–8.9 Sv. For the years 1998–99, the ULSW formation rate solely based on the subpolar North Atlantic CFC-11 inventories yielded 6.9–9.2 Sv. At this time, the lack of classical LSW formation was almost compensated for by the strongly pronounced ULSW formation. Indications are presented that the convection area needed in 1998–99 to form this amount of ULSW exceeded the available area in the Labrador Sea. The Irminger Sea might be considered as an additional region favoring ULSW formation. In 2000–01, ULSW formation weakened to 3.3–4.7 Sv. Time series of layer thickness based on historical data indicate that there exists considerable variability of ULSW and classical LSW formation on decadal scales
Heat and freshwater transport through the central Labrador Sea
Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 606-628, doi:10.1175/JPO2875.1.The seasonal and interannual variations in the export of Labrador Sea Water (LSW), and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats. A typical seasonal cycle involves a 300-m thickening of LSW (convection) followed by an equivalent thinning (restratification). Restratification is characterized by a drift of properties toward boundary current values that is indicative of a vigorous lateral exchange. The net result is a convergence of heat and salt, between 200 and 700 m, that balances the net surface heat loss to the atmosphere and partially offsets the surface freshwater accumulation due to surface, lateral exchange. Interannual variations in the export of LSW can be explained by taking into account changes in the central Labrador Sea–boundary current density gradient, which governs the lateral exchange. Interannual variations in how much heat is converged into the region, on the other hand, mostly reflect changes in the temperature of LSW. This only partly explains, however, the increased convergence of heat that occurs during the late 1990s. In years in which convection does not occur, restratification trends continue throughout the entire year, albeit at a reduced rate.This work was supported by NSF Grant OCE
02-40978, the John E. and Anne W. Sawyer Endowed
Fund, and the Grayce B. Kerr Fund
On the connection between dense water formation, overturning, and poleward heat transport in a convective basin
Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 1822-1840, doi:10.1175/JPO2932.1.An isopycnal, two-layer, idealized model for a convective basin is proposed, consisting of a convecting, interior region and a surrounding boundary current (buoyancy and wind-driven). Parameterized eddy fluxes govern the exchange between the two. To balance the interior buoyancy loss, the boundary current becomes denser as it flows around the basin. Geostrophy imposes that this densification be accompanied by sinking in the boundary current and hence by an overturning circulation. The poleward heat transport, associated with convection in the basin, can thus be viewed as a result of both an overturning and a horizontal circulation. When adapted to the Labrador Sea, the model is able to reproduce the bulk features of the mean state, the seasonal cycle, and even the shutdown of convection from 1969 to 1972. According to the model, only 40% of the poleward heat (buoyancy) transport of the Labrador Sea is associated with the overturning circulation. An exact solution is presented for the linearized equations when changes in the boundary current are small. Numerical solutions are calculated for variations in the amount of convection and for changes in the remotely forced circulation around the basin. These results highlight how the overturning circulation is not simply related to the amount of dense water formed. A speeding up of the circulation around the basin due to wind forcing, for example, will decrease the intensity of the overturning circulation while the dense water formation remains unvaried. In general, it is shown that the fraction of poleward buoyancy (or heat) transport carried by the overturning circulation is not an intrinsic property of the basin but can vary as a result of a number of factors.This work was supported by NSF OCE
02-40978 and by the Climate Institute at the Woods
Hole Oceanographic Institution (WHOI)
How does Labrador Sea Water enter the deep western boundary current?
Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 968-983, doi:10.1175/2007JPO3807.1.Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (DWBC), one of the primary pathways by which it exits the subpolar gyre, can shed light on the continuity between climate conditions in the formation region and their downstream signal. Using the trajectories of (profiling) autonomous Lagrangian circulation explorer [(P)ALACE] floats, operating between 1996 and 2002, three processes are evaluated for their role in the entry of Labrador Sea Water in the DWBC: 1) LSW is formed directly in the DWBC, 2) eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) a horizontally divergent mean flow advects LSW from the interior to the DWBC. A comparison of the heat flux associated with each of these three mechanisms suggests that all three contribute to the transformation of the boundary current as it transits the Labrador Sea. The formation of LSW directly in the DWBC and the eddy heat flux between the interior Labrador Sea and the DWBC may play leading roles in setting the interannual variability of the exported water mass.We are also grateful to the NSF for
their support of this research
Winter mixed layer development in the central Irminger Sea : the effect of strong, intermittent wind events
Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 541-565, doi:10.1175/2007JPO3678.1.The impact of the Greenland tip jet on the wintertime mixed layer of the southwest Irminger Sea is investigated using in situ moored profiler data and a variety of atmospheric datasets. The mixed layer was observed to reach 400 m in the spring of 2003 and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. A typical tip jet event is associated with a low pressure system that is advected by upper-level steering currents into the region east of Cape Farewell and interacts with the high topography of southern Greenland. Heat flux time series for the mooring site were constructed that include the enhancing influence of the tip jet events. This was used to force a one-dimensional mixed layer model, which was able to reproduce the observed envelope of mixed layer deepening in both winters. The deeper mixed layer of the first winter was largely due to a higher number of robust tip jet events, which in turn was caused by the steering currents focusing more storms adjacent to southern Greenland. Application of the mixed layer model to the winter of 1994–95, a period characterized by a high-NAO index, resulted in convection exceeding 1700 m. This prediction is consistent with hydrographic data collected in summer 1995, supporting the notion that deep convection can occur in the Irminger Sea during strong winters.KV
and RP were supported by National Science Foundation
Grant OCE-0450658. GWKM was supported by
the Canadian Foundation for Climate and Atmospheric
Sciences. MHR was supported by the Nordic Council of
Ministers (West-Nordic Ocean Climate)
Modelling CFC inventories and formation rates of Labrador Sea Water
A high-resolution model of the North Atlantic Ocean is used to examine the potential of chlorofluorocarbon (CFC) inventories for calculating the rate of Labrador Sea Water (LSW) formation. While the simulated CFC-11 inventory and its geographical distribution in 1997 is fairly similar to observations, the model indicates pronounced variations in the history of CFC uptake, reflecting pulsations in LSW renewal in response to changes in wintertime atmospheric conditions. The LSW formation rate based on the volume of newly homogenized water during a winter season varies between 0 Sv and 11 Sv, and it is correlated (with a lag of 1 year) with the North Atlantic Oscillation (NAO) Index. The CFC-based estimate of the mean LSW formation rate is 3.5–4.4 Sv, approximately representing the mean volumetric formation rate (4.3 Sv) for the period 1970–1997
