305 research outputs found

    KIC 9406652: An Unusual Cataclysmic Variable in the Kepler Field of View

    Full text link
    KIC 9406652 is a remarkable variable star in the Kepler field of view that shows both very rapid oscillations and long term outbursts in its light curve. We present an analysis of the light curve over quarters 1 to 15 and new spectroscopy that indicates that the object is a cataclysmic variable with an orbital period of 6.108 hours. However, an even stronger signal appears in the light curve periodogram for a shorter period of 5.753 hours, and we argue that this corresponds to the modulation of flux from the hot spot region in a tilted, precessing disk surrounding the white dwarf star. We present a preliminary orbital solution from radial velocity measurements of features from the accretion disk and the photosphere of the companion. We use a Doppler tomography algorithm to reconstruct the disk and companion spectra, and we also consider how these components contribute to the object's spectral energy distribution from ultraviolet to infrared wavelengths. This target offers us a remarkable opportunity to investigate disk processes during the high mass transfer stage of evolution in cataclysmic variables.Comment: 31 pages, 13 figures, accepted for Ap

    Universality of Regge and vibrational trajectories in a semiclassical model

    Full text link
    The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also presented.Comment: 12 page

    Young "Dipper" Stars in Upper Sco and ρ\rho Oph Observed by K2

    Get PDF
    We present ten young (\lesssim10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show \sim10-20 dips in flux over the 80-day observing campaign with durations of \sim0.5-2 days and depths of up to \sim40%. These stars are all members of the ρ\rho Ophiuchus (\sim1 Myr) or Upper Scorpius (\sim10 Myr) star-forming regions. To investigate the nature of these "dippers" we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and Hα\alpha emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within \sim10 stellar radii in most cases; however, the sub-mm observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.Comment: Accepted to ApJ, 19 pages, 10 figure

    EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    Get PDF
    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp=12.7Kp = 12.7 that contains an eclipsing binary (`EB') with PA=3.59470P_A = 3.59470 d and a second EB with PB=0.61825P_B = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, γ˙=0.0024±0.0007\dot \gamma = 0.0024 \pm 0.0007 cm s2^{-2}; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25^\circ. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.Comment: Accepted for publication in MNRA

    EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries

    Get PDF
    We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as "B-N" (blue northerly image). The host of the quadruple system, however, is a Kp = 17 magnitude star with a composite M-star spectrum, which we designate as "R-S" (red southerly image). With a 3.2" separation and similar radial velocities and photometric distances, 'B-N' is likely physically associated with 'R-S', making this a quintuple system, but that is incidental to our main claim of a strongly interacting quadruple system in 'R-S'. The two binaries in 'R-S' have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of >89 degrees. From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all four stars are very similar with masses close to 0.4 Msun. Both of the binaries exhibit significant ETVs where those of the primary and secondary eclipses 'diverge' by 0.05 days over the course of the 80-day observations. Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted to RV studies of this faint target, the outer orbit should be measurable within a year.Comment: 20 pages, 18 figures, 7 tables; accepted for publication in MNRA

    Semiclassical Quantization of Effective String Theory and Regge Trajectories

    Get PDF
    We begin with an effective string theory for long distance QCD, and evaluate the semiclassical expansion of this theory about a classical rotating string solution, taking into account the the dynamics of the boundary of the string. We show that, after renormalization, the zero point energy of the string fluctuations remains finite when the masses of the quarks on the ends of the string approach zero. The theory is then conformally invariant in any spacetime dimension D. For D=26 the energy spectrum of the rotating string formally coincides with that of the open string in classical Bosonic string theory. However, its physical origin is different. It is a semiclassical spectrum of an effective string theory valid only for large values of the angular momentum. For D=4, the first semiclassical correction adds the constant 1/12 to the classical Regge formula.Comment: 65 pages, revtex, 3 figures, added 2 reference

    Auxiliary fields and hadron dynamics

    Full text link
    The relations existing between the auxiliary field (einbein field) formalism and the spinless Salpeter equation are studied in the case of two particles with the same mass, interacting via a confining potential. The problem of non-orthogonality for radial excited states in the auxiliary field formalism is discussed and found to be non-crucial. It is shown that the classical equations of motion of the rotating string model, derived from the QCD lagrangian, reduce exactly to the classical equations of motion of the phenomenological semirelativistic flux tube model, provided all auxiliary fields are eliminated correctly from the rotating string hamiltonian

    The single-sided pulsator CO Camelopardalis

    Get PDF
    Abstract CO Cam (TIC 160268882) is the second “single-sided pulsator” to be discovered. These are stars where one hemisphere pulsates with a significantly higher amplitude than the other side of the star. CO Cam is a binary star comprised of an Am δ Sct primary star with Teff = 7070 ± 150 K, and a spectroscopically undetected G main-sequence secondary star. The dominant pulsating side of the primary star is centred on the L1 point. We have modelled the spectral energy distribution combined with radial velocities, and independently the TESS light curve combined with radial velocities. Both of these give excellent agreement and robust system parameters for both stars. The δ Sct star is an oblique pulsator with at least four low radial overtone (probably) f modes with the pulsation axis coinciding with the tidal axis of the star, the line of apsides. Preliminary theoretical modelling indicates that the modes must produce much larger flux perturbations near the L1 point, although this is difficult to understand because the pulsating star does not come near to filling its Roche lobe. More detailed models of distorted pulsating stars should be developed. These newly discovered single-sided pulsators offer new opportunities for astrophysical inference from stars that are oblique pulsators in close binary stars
    corecore