2,243 research outputs found

    Fragmentation of magnetism in artificial kagome dipolar spin ice

    Full text link
    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, like the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally-active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism.Comment: 9 pages, 5 figures. Published version available on the Nat. Comm. web site: http://www.nature.com/ncomms/2016/160513/ncomms11446/full/ncomms11446.htm

    Measurement of the dynamical dipolar coupling in a pair of magnetic nano-disks using a Ferromagnetic Resonance Force Microscope

    Get PDF
    International audienceWe perform an extensive experimental spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nano-disks coupled by the magneto-dipolar interaction. For this, we take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope (f-MRFM) to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anti-crossing and hybridization of the spin-wave modes in the pair of disks. At the exact tuning, the measured frequency splitting between the binding and anti-binding modes precisely corresponds to the strength of the dynamical dipolar coupling Ω\Omega. This accurate f-MRFM determination of Ω\Omega is measured as a function of the separation between the nano-disks. It agrees quantitatively with calculations of the expected dynamical magneto-dipolar interaction in our sample

    Photonic Technologies for a Pupil Remapping Interferometer

    Full text link
    Interest in pupil-remapping interferometry, in which a single telescope pupil is fragmented and recombined using fiber optic technologies, has been growing among a number of groups. As a logical extrapolation from several highly successful aperture masking programs underway worldwide, pupil remapping offers the advantage of spatial filtering (with single-mode fibers) and in principle can avoid the penalty of low throughput inherent to an aperture mask. However in practice, pupil remapping presents a number of difficult technological challenges including injection into the fibers, pathlength matching of the device, and stability and reproducibility of the results. Here we present new approaches based on recently-available photonic technologies in which coherent three-dimensional waveguide structures can be sculpted into bulk substrate. These advances allow us to miniaturize the photonic processing into a single, robust, thermally stable element; ideal for demanding observatory or spacecraft environments. Ultimately, a wide range of optical functionality could be routinely fabricated into such structures, including beam combiners and dispersive or wavelength selective elements, bringing us closer to the vision of an interferometer on a chip.Comment: 9 pages, 6 figures, SPIE 201

    Tunable stochasticity in an artificial spin network

    Full text link
    Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths towards post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.Comment: 24 pages, 10 figure

    Size distribution of magnetic charge domains in thermally activated but out-of-equilibrium artificial spin ice

    No full text
    International audienceA crystal of emerging magnetic charges is expected in the phase diagram of the dipolar kagome spin ice. An observation of charge crystallites in thermally demagnetized artificial spin ice arrays has been recently reported by S. Zhang and coworkers and explained through the thermodynamics of the system as it approaches a charge-ordered state. Following a similar approach, we have generated a partial order of magnetic charges in an artificial kagome spin ice lattice made out of ferrimagnetic material having a Curie temperature of 475 K. A statistical study of the size of the charge domains reveals an unconventional sawtooth distribution. This distribution is in disagreement with the predictions of the thermodynamic model and is shown to be a signature of the kinetic process governing the remagnetization

    Ultrafast broadband circular dichroism in the deep ultraviolet

    Get PDF
    The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photo-elastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250-370 nm). The resulting sequence of alternating left- and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground- and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure [Ru(bpy)(3)](2+) are successfully recorded with a sensitivity of <2 x 10(-5) OD (approximate to 0.7 mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    BioGeoChemical‐Argo floats reveal stark latitudinal gradient in the Southern Ocean deep carbon flux driven by phytoplankton community composition

    Get PDF
    The gravitational sinking of particles in the mesopelagic layer (∼200–1,000 m) transfers to the deep ocean a part of atmospheric carbon fixed by phytoplankton. This process, called the gravitational pump, exerts an important control on atmospheric CO2 levels but remains poorly characterized given the limited spatio-temporal coverage of ship-based flux measurements. Here, we examined the gravitational pump with BioGeoChemical-Argo floats in the Southern Ocean, a critically under-sampled area. Using time-series of bio-optical measurements, we characterized the concentration of particles in the productive zone, their export and transfer efficiency in the underlying mesopelagic zone, and the magnitude of sinking flux at 1,000 m. We separated float observations into six environments delineated by latitudinal fronts, sea-ice coverage, and natural iron fertilization. Results show a significant increase in the sinking-particle flux at 1,000 m with increasing latitude, despite comparable particle concentrations in the productive layer. The variability in deep flux was driven by changes in the transfer efficiency of the flux, related to the composition of the phytoplanktonic community and the size of particles, with intense flux associated with the predominance of micro-phytoplankton and large particles at the surface. We quantified the relationships between the nature of surface particles and the flux at 1,000 m and used these results to upscale our flux survey across the whole Southern Ocean using surface observations by floats and satellites. We then estimated the basin-wide Spring-Summer flux of sinking particles at 1,000 m over the Southern Ocean (0.054 ± 0.021 Pg C)

    Impact of Emergent Cervical Carotid Stenting in Tandem Occlusion Strokes Treated by Thrombectomy: A Review of the TITAN Collaboration

    Get PDF
    Introduction: Endovascular therapy has been shown to be an effective and safe treatment for tandem occlusion. The endovascular therapeutic strategies for tandem occlusions strokes have not been adequately evaluated and the best approach is still controversial. The TITAN (Thrombectomy in TANdem occlusions) registry was a result of a collaborative effort to identify the best therapeutic approach for acute ischemic stroke due to tandem lesion. In this review, we aim to summarize the main findings of the TITAN study and discuss the challenges of treatment for tandem occlusion in the era of endovascular thrombectomy.Methods: A review of the data from the multicenter international observational and non-randomized TITAN registry was performed. The TITAN registry included acute ischemic stroke patients with tandem lesions (proximal intracranial occlusion and cervical carotid artery occlusion or stenosis&gt;90%) who were treated with thrombectomy with or without carotid artery stenting.Results: Prior intravenous thrombolysis and emergent cervical carotid stenting were associated with higher reperfusion (mTICI 2b-3 and mTICI 3) rates at the end of the intervention. Poor outcome did not occur more frequently after stenting than after conservative treatment of the cervical carotid lesion. Emergent carotid stenting with antithrombotic agents and intracranial thrombectomy yielded higher reperfusion rate and good outcome (90 day mRS 0–2) compared to other strategies (carotid artery stenting and thrombectomy without antithrombotic, angioplasty and thrombectomy, or thrombectomy alone). Pretreatment intravenous thrombolysis was not associated with increased risk of hemorrhagic complications. Likewise, periprocedural unfractionated heparin did not modify the efficacy and safety results. Etiology of carotid artery lesion (atherosclerosis vs. dissection) did not emerge as predictor of outcome or recanalization.Conclusion: Emergent stenting of the cervical carotid lesion with antithrombotic agents in conjunction to thrombectomy appears to be the best treatment strategy for acute ischemic strokes with tandem lesions. These findings will be further investigated in the ongoing randomized controlled TITAN trial

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore