8,259 research outputs found

    Classical Signal Model for Quantum Channels

    Full text link
    Recently it was shown that the main distinguishing features of quantum mechanics (QM) can be reproduced by a model based on classical random fields, so called prequantum classical statistical field theory (PCSFT). This model provides a possibility to represent averages of quantum observables, including correlations of observables on subsystems of a composite system (e.g., entangled systems), as averages with respect to fluctuations of classical (Gaussian) random fields. In this note we consider some consequences of PCSFT for quantum information theory. They are based on the observation \cite{W} of two authors of this paper that classical Gaussian channels (important in classical signal theory) can be represented as quantum channels. Now we show that quantum channels can be represented as classical linear transformations of classical Gaussian signa

    A study on PDC drill bits quality

    Get PDF
    The quality of innovating PDC (Polycrystalline Diamond Compact) bits materials needs to be determined with accuracy by measuring cutting efficiency and wear rate, both related to the overall mechanical properties. An original approach is developed to encompass cutting efficiency and wear contribution to the overall sample quality. Therefore, a lathe-type test device was used to abrade specific samples from various manufacturers. Post-experiment analyzes are based on models establishing coupled relationships between cutting and friction stresses related to the drag bits excavation mechanism. These models are implemented in order to evaluate cutting efficiency and to estimate wear of the diamond insert. Phase analysis by XRD and finite element simulations were performed to explain the role of physicochemical parameters on the calculated quality factor values. Four main properties of PDC material were studied to explain quality results obtained in this study: cobalt content in samples that characterizes hardness/fracture toughness compromise, undesired phase as tungsten carbide weakening diamond structure, diamond grains sizes and residual stresses distribution affecting abrasion resistance

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Developing a Business Case for the Care Coordination and Transition Management Model: Needs, Methods, and Measures

    Get PDF
    In this descriptive qualitative study, nurse and healthcare leaders\u27 experiences, perceptions of care coordination and transition management (CCTM®), and insights as to how to foster adoption of the CCTM RN role in nursing education, practice across the continuum, and policy were explored. Twenty-five barriers to recognition and adoption of CCTM RN practice across the continuum were identified and categorized. Implications of these findings, recommendations for adoption of CCTM RN practice across the care continuum, and strategies for reimbursement policies are discussed

    Brownian Entanglement

    Get PDF
    We show that for two classical brownian particles there exists an analog of continuous-variable quantum entanglement: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot be prepared via mixing of any factorized distributions referring to the two particles in separate. This is possible for particles which interacted in the past, but do not interact in the present. Three factors are crucial for the effect: 1) separation of time-scales of coordinate and momentum which motivates the definition of coarse-grained velocities; 2) the resulting uncertainty relations between the coordinate of the brownian particle and the change of its coarse-grained velocity; 3) the fact that the coarse-grained velocity, though pertaining to a single brownian particle, is defined on a common context of two particles. The brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the brownian motion. We discuss possibilities of its experimental realizations in examples of macroscopic brownian motion.Comment: 18 pages, no figure

    Enhancement of Jc by Hf -Doping in the Superconductor MgB2: A Hyperfine Interaction Study

    Full text link
    Measurements of the critical current density (Jc) by magnetization and the upper critical field (Hc2) by magnetoresistance have been performed for hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared to that by ion irradiation without any appreciable decrease in Tc, which is beneficial from the point of view of applications. The irreversibility line extracted from Jc shows an upward shift. In addition, there has been an increase in the upper critical field which indicates that Hf partially substitutes for Mg. Hyperfine interaction parameters obtained from time differential perturbed angular correlation (TDPAC) measurements revealed the formation of HfB and HfB2 phases along with the substitution of Hf. A possible explanation is given for the role of these species in the enhancement of Jc in MgB2 superconductor
    corecore