526 research outputs found

    Surveying Poverty: Addressing Poverty Law in a Required Course

    Get PDF

    An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice

    Get PDF
    AIMS/HYPOTHESIS: Loss of circadian clocks from all tissues causes defective glucose homeostasis as well as loss of feeding and activity rhythms. Little is known about peripheral tissue clocks, so we tested the hypothesis that an intrinsic circadian clock of the pancreas is important for glucose homeostasis. METHODS: We monitored real-time bioluminescence of pancreas explants from circadian reporter mice and examined clock gene expression in beta cells by immunohistochemistry and in situ hybridisation. We generated mice selectively lacking the essential clock gene Bmal1 (also known as Arntl) in the pancreas and tested mutant mice and littermate controls for glucose and insulin tolerance, insulin production and behaviour. We examined islets isolated from mutants and littermate controls for glucose-stimulated insulin secretion and total insulin content. RESULTS: Pancreas explants exhibited robust circadian rhythms. Clock genes Bmal1 and Per1 were expressed in beta cells. Despite normal activity and feeding behaviour, mutant mice lacking clock function in the pancreas had severe glucose intolerance and defective insulin production; their isolated pancreatic islets had defective glucose-stimulated insulin secretion, but normal total insulin content. CONCLUSIONS/INTERPRETATION: The mouse pancreas has an autonomous clock function and beta cells are very likely to be one of the pancreatic cell types possessing an intrinsic clock. The Bmal1 circadian clock gene is required in the pancreas, probably in beta cells, for normal insulin secretion and glucose homeostasis. Our results provide evidence for a previously unrecognised molecular regulator of pancreatic glucose-sensing and/or insulin secretion

    Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

    Get PDF
    OBJECTIVE-The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). RESEARCH DESIGN AND METHODS-Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. LTS-Intracerebroventiicular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. CONCLUSIONS-This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production. Diabetes 59: 1591-1600, 201

    A clonal expression biomarker associates with lung cancer mortality

    Get PDF
    An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage1. Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types2,3,4,5,6. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types

    Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking.

    Get PDF
    Bromodomains are epigenetic reader domains, which have come under increasing scrutiny both from academic and pharmaceutical research groups. Effective targeting of the BAZ2B bromodomain by small molecule inhibitors has been recently reported, but no structural information is yet available on the interaction with its natural binding partner, acetylated histone H3K14ac. We have assigned the BAZ2B bromodomain and studied its interaction with H3K14ac acetylated peptides by NMR spectroscopy using both chemical shift perturbation (CSP) data and clean chemical exchange (CLEANEX-PM) NMR experiments. The latter was used to characterize water molecules known to play an important role in mediating interactions. Besides the anticipated Kac binding site, we consistently found the bromodomain BC loop as hotspots for the interaction. This information was used to create a data-driven model for the complex using HADDOCK. Our findings provide both structure and dynamics characterization that will be useful in the quest for potent and selective inhibitors to probe the function of the BAZ2B bromodomain.This is the final published version of the article. It has been published by the American Chemical Society in Biochemistry. The article can be accessed on their website here: http://pubs.acs.org/doi/abs/10.1021/bi500909d. It is freely available under a CC BY licence
    corecore