4,160 research outputs found

    The Initial Mass Function of Early-type Galaxies: no correlation with [Mg/Fe]

    Full text link
    The Initial Mass Function (IMF) of early-type galaxies (ETGs) has been found to feature systematic variations by both dynamical and spectroscopic studies. In particular, spectral line strengths, based on gravity-sensitive features, suggest an excess of low-mass stars in massive ETGs, i.e. a bottom-heavy IMF. The physical drivers of IMF variations are currently unknown. The abundance ratio of alpha elements, such as [Mg/Fe], has been suggested as a possible driver of the IMF changes, although dynamical constraints do not support this claim. In this letter, we take advantage of the large SDSS database. Our sample comprises 24,781 high-quality spectra, covering a large range in velocity dispersion (100<sigma0<320 km/s) and abundance ratio (-0.1<[Mg/Fe]<+0.4). The large volume of data allows us to stack the spectra at fixed values of sigma0 and [Mg/Fe]. Our analysis -- based on gravity-sensitive line strengths -- gives a strong correlation with central velocity dispersion and a negligible variation with [Mg/Fe] at fixed sigma0. This result is robust against individual elemental abundance variations, and seems not to raise any apparent inconsistency with the alternative method based on galaxy dynamics.Comment: 5 pages, 2 figures, 2 tables. MNRAS Letters, in pres

    SPIDER - IV. Optical and NIR color gradients in Early-type galaxies: New Insights into Correlations with Galaxy Properties

    Full text link
    We present an analysis of stellar population gradients in 4,546 Early-Type Galaxies with photometry in grizYHJKgrizYHJK along with optical spectroscopy. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, \nabla_{\star}, which incorporates all of the available color indices, we investigate how \nabla_{\star} varies with galaxy mass proxies, i.e. velocity dispersion, stellar (M_star) and dynamical (M_dyn) masses, as well as age, metallicity, and alpha/Fe. ETGs with M_dyn larger than 8.5 x 10^10, M_odot have increasing age gradients and decreasing metallicity gradients wrt mass, metallicity, and enhancement. We find that velocity dispersion and alpha/Fe are the main drivers of these correlations. ETGs with 2.5 x 10^10 M_odot =< M_dyn =< 8.5 x 10^10 M_odot, show no correlation of age, metallicity, and color gradients wrt mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and alpha-enhancement is significant at \sim 4sigma, and results from the fact that metallicity gradient decreases with alpha/Fe. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than \sim 5 Gyr, mostly at low-mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.Comment: Accepted for Publication in the Astronomical Journa

    SPIDER X - Environmental effects in central and satellite early-type galaxies through the stellar fossil record

    Full text link
    A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than "isolated" systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than "isolated" centrals, mainly because of gas-rich interactions with their companion galaxies.Comment: 22 pages, 19 figures, accepted for publication in MNRA

    Age, metallicity and star formation history of spheroidal galaxies in cluster at z~1.2

    Get PDF
    We present the analysis, based on spectra collected at the Large Binocular Telescope, of the stellar populations in seven spheroidal galaxies in the cluster XLSSJ0223 at zz\sim1.22. The aim is to constrain the epoch of their formation and their star formation history. Using absorption line strenghts and full spectral fitting, we derive for the stellar populations of the seven spheroids a median age =2.4±\pm0.6 Gyr, corresponding to a median formation redshift $\sim2.6_{-0.5}^{+0.7}$ (lookback time = 11$_{-1.0}^{+0.6}$ Gyr). We find a significant scatter in age, showing that massive spheroids, at least in our targeted cluster, are not coeval. The median metallicity is [Z/H]=0.09$\pm$0.16, as for early-types in clusters at 0$<z<0.9.Thislackofevolutionof[Z/H]overtherange0<0.9. This lack of evolution of [Z/H] over the range 0<zz<1.3,correspondingtothelast9billionsyears,suggeststhatnosignificantadditionalstarformationandchemicalenrichmentarerequiredforclusterspheroidstoreachthepresentdaypopulation.Wedonotdetectsignificantcorrelationbetweenageandvelocitydispersion1.3, corresponding to the last 9 billions years, suggests that no significant additional star formation and chemical enrichment are required for cluster spheroids to reach the present-day population. We do not detect significant correlation between age and velocity dispersion \sigma_e,ordynamicalmassM, or dynamical mass M_{dyn},oreffectivestellarmassdensity, or effective stellar mass density \Sigma_e.Onthecontrary,themetallicity[Z/H]ofthesevenspheroidsiscorrelatedtotheirdynamicalmassM. On the contrary, the metallicity [Z/H] of the seven spheroids is correlated to their dynamical mass M_{dyn},accordingtoarelationsimilartotheoneforlocalspheroids.[Z/H]isalsoanticorrelatedtostellarmassdensity, according to a relation similar to the one for local spheroids. [Z/H] is also anticorrelated to stellar mass density \Sigma_ebecauseoftheanticorrelationbetweenM because of the anticorrelation between M_{dyn}and and \Sigma_e.Therefore,thebasictrendsobservedinthelocaluniversewerealreadyestablishedat. Therefore, the basic trends observed in the local universe were already established at z\sim1.3$, i.e. more massive spheroids are more metal rich, have lower stellar mass density and tend to be older than lower-mass galaxies.Comment: 16 pages, 6 figures, 6 tables, published on MNRA

    Global Properties of the Rich Cluster ABCG 209 at z~0.2. Spectroscopic and Photometric Catalogue

    Full text link
    This paper is aimed at giving an overview of the global properties of the rich cluster of galaxies ABCG 209. This is achieved by complementing the already available data with new medium resolution spectroscopy and NIR photometry which allow us to i) analyse in detail the cluster dynamics, distinguishing among galaxies belonging to different substructures and deriving their individual velocity distributions, using a total sample of 148 galaxies in the cluster region, of which 134 belonging to the cluster; ii) derive the cluster NIR luminosity function; iii) study the Kormendy relation and the photometric plane of cluster early-type galaxies (ETGs). Finally we provide an extensive photometric (optical and NIR) and spectroscopic dataset for such a complex system to be used in further analyses investigating the nature, formation and evolution of rich clusters of galaxies. The observational scenario confirms that ABCG 209 is presently undergoing strong dynamical evolution with the merging of two or more subclumps. This interpretation is also supported by the detection of a radio halo (Giovannini et al. 2006) suggesting that there is a recent or ongoing merging. Cluster ETGs follow a Kormendy relation whose slope is consistent with previous studies both at optical and NIR wavelengths. We investigate the origin of the intrinsic scatter of the photometric plane due to trends of stellar populations, using line indices as indicators of age, metallicity and alpha/Fe enhancement. We find that the chemical evolution of galaxies could be responsible for the intrinsic dispersion of the Photometric Plane.Comment: 39 pages, 17 figures, MNRAS in pres

    Probing galaxy evolution through the internal colour gradients, the Kormendy relations and the Photometric Plane of cluster galaxies at z~0.2

    Full text link
    We present a detailed analysis of the photometric properties of galaxies in the cluster \A2163B at redshift z~0.2. R-, I- and K-band structural parameters, (half light radius r_e, mean surface brightness _e within r_e and Sersic index n) are derived for N~60 galaxies, and are used to study their internal colour gradients. For the first time, we use the slopes of optical-NIR Kormendy relations to study colour gradients as a function of galaxy size, and we derive the Photometric Plane at z~0.2 in the K band. Colour gradients are negligible at optical wavelengths, and are negative in the optical-NIR, implying a metallicity gradient in galaxies of ~0.2 dex per radial decade. The analysis of the Kormendy relation suggests that its slope increases from the optical to the NIR, implying that colour gradients do not vary or even do become less steep in more massive galaxies. Such a result is not simply accomodated within a monolithic collapse scenario, while it can be well understood within a hierarchical merging framework. Finally, we derive the first NIR Photometric Plane at z~0.2, accounting for both the correlations on the measurement uncertainties and the selection effects. The Photometric Plane at z~0.2 is consistent with that at z~0, with an intrinsic scatter significantly smaller than the Kormendy relation but larger than the Fundamental Plane.Comment: 18 pages, 12 figures, A&A in pres

    Large X-ray Flares from LMC X-4: Discovery of Milli-hertz Quasi-periodic Oscillations and QPO-modulated Pulsations

    Get PDF
    We report the discovery of milli-hertz (mHz) quasi-periodic oscillations (QPOs) and QPO-modulated pulsations during large X-ray flares from the high-mass X-ray binary pulsar LMC X-4 using data from the Rossi X-Ray Timing Explorer (RXTE). The lightcurves of flares show that, in addition to ~74 mHz coherent pulsations, there exist two more time-varying temporal structures at frequencies of ~0.65-1.35 and ~2-20 mHz. These relatively long-term structures appear in the power density spectra as mHz QPOs and as well-developed sidebands around the coherent pulse frequency as well, indicating that the amplitudes of the coherent pulsation is modulated by those of the mHz QPOs. One interesting feature is that, while the first flare shows symmetric sidebands around the coherent pulse frequency, the second flare shows significant excess emission in the lower-frequency sidebands due to the ~2-20 mHz QPOs. We discuss the origin of the QPOs using a combination of the beat-frequency model and a modified version of the Keplerian-frequency model. According to our discussion, it seems to be possible to attribute the origin of the ~0.65-1.35 and ~2-20 mHz QPOs to the beating between the rotational frequency of the neutron star and the Keplerian frequency of large accreting clumps near the corotation radius and to the orbital motion of clumps at Keplerian radii of 2-10 times 10^9 cm, respectively.Comment: 12 pages, including 4 figures; accepted by ApJ Letter
    corecore