197 research outputs found

    Projected pseudotransient continuation

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Spatial and seasonal distributions of carbonaceous aerosols over China 

    Get PDF
    Author name used in this publication: S. C. LeeAuthor name used in this publication: S. H. Qi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Retinoid-Binding Proteins: Similar Protein Architectures Bind Similar Ligands via Completely Different Ways

    Get PDF
    Background: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP) and epididymal retinoic acid binding protein (ERABP) carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs) and cellular retinoic acid-binding proteins (CRABPs) carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. Methodology/Principal Findings: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. Conclusions/Significance: Our results reveal the differences in the binding modes between the different retinoid-bindin

    A Randomly-Controlled Study on the Cardiac Function at the Early Stage of Return to the Plains after Short-Term Exposure to High Altitude

    Get PDF
    High altitude acclimatization and adaptation mechanisms have been well clarified, however, high altitude de-adaptation mechanism remains unclear. In this study, we conducted a controlled study on cardiac functions in 96 healthy young male who rapidly entered the high altitude (3700 m) and returned to the plains (1500 m) after 50 days. Ninety eight healthy male who remained at low altitude were recruited as control group. The mean pulmonary arterial pressure (mPAP), left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), cardiac function index (Tei index) were tested. Levels of serum creatine kinase isoform MB (CK-MB), lactate dehydrogenase isoenzyme-1 (LDH-1), endothelin-1 (ET-1), nitrogen oxide (NO), serum hypoxia-inducible factor-1α (HIF-1α), 8-iso-prostaglandin F2α (8-iso PGF2α), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured at an altitude of 3700 m and 1500 m respectively. The results showed that after short-term exposure to high altitude mPAP and Tei index increased significantly, while LVEF and LVFS decreased significantly. These changes were positively correlated with altitude. On the 15th day after the subjects returned to low altitude, mPAP, LVEF and LVFS levels returned to the same level as those of the control subjects, but the Tei index in the returned subjects was still significantly higher than that in the control subjects (P<0.01). We also found that changes in Tei index was positively correlated with mPAP, ET-1, HIF-1α and 8-iso PGF2α levels, and negatively correlated with the level of NO, LVEF, LVFS, CK-MB and LDH-1. These findings suggest that cardiac function de-adapts when returning to the plains after short-term exposure to high altitude and the function recovery takes a relatively long time

    A-6G and A-20C Polymorphisms in the Angiotensinogen Promoter and Hypertension Risk in Chinese: A Meta-Analysis

    Get PDF
    BACKGROUND: Numerous studies in Chinese populations have evaluated the association between the A-6G and A-20C polymorphisms in the promoter region of angiotensinogen gene and hypertension. However, the results remain conflicting. We carried out a meta-analysis for these associations. METHODS AND RESULTS: Case-control studies in Chinese and English publications were identified by searching the MEDLINE, EMBASE, CNKI, Wanfang, CBM, and VIP databases. The random-effects model was applied for dichotomous outcomes to combine the results of the individual studies. We finally selected 24 studies containing 5932 hypertensive patients and 5231 normotensive controls. Overall, we found significant association between the A-6G polymorphism and the decreased risk of hypertension in the dominant genetic model (AA+AG vs. GG: P=0.001, OR=0.71, 95%CI 0.57-0.87, P(heterogeneity)=0.96). The A-20C polymorphism was significantly associated with the increased risk for hypertension in the allele comparison (C vs. A: P=0.03, OR=1.14, 95%CI 1.02-1.27, P(heterogeneity)=0.92) and recessive genetic model (CC vs. CA+AA: P=0.005, OR=1.71, 95%CI 1.18-2.48, P(heterogeneity)=0.99). In the subgroup analysis by ethnicity, significant association was also found among Han Chinese for both A-6G and A-20C polymorphisms. A borderline significantly decreased risk of hypertension between A-6G and Chinese Mongolian was seen in the allele comparison (A vs. G: P=0.05, OR=0.79, 95%CI 0.62-1.00, P(heterogeneity)=0.84). CONCLUSION: Our meta-analysis indicated significant association between angiotensinogen promoter polymorphisms and hypertension in the Chinese populations, especially in Han Chinese

    Putative DHHC-Cysteine-Rich Domain S-Acyltransferase in Plants

    Get PDF
    Protein S-acyltransferases (PATs) containing Asp-His-His-Cys within a Cys-rich domain (DHHC-CRD) are polytopic transmembrane proteins that are found in eukaryotic cells and mediate the S-acylation of target proteins. S-acylation is an important secondary and reversible modification that regulates the membrane association, trafficking and function of target proteins. However, little is known about the characteristics of PATs in plants. Here, we identified 804 PATs from 31 species with complete genomes. The analysis of the phylogenetic relationships suggested that all of the PATs fell into 8 groups. In addition, we analysed the phylogeny, genomic organization, chromosome localisation and expression pattern of PATs in Arabidopsis, Oryza sative, Zea mays and Glycine max. The microarray data revealed that PATs genes were expressed in different tissues and during different life stages. The preferential expression of the ZmPATs in specific tissues and the response of Zea mays to treatments with phytohormones and abiotic stress demonstrated that the PATs play roles in plant growth and development as well as in stress responses. Our data provide a useful reference for the identification and functional analysis of the members of this protein family

    Coaction of Spheroid-Derived Stem-Like Cells and Endothelial Progenitor Cells Promotes Development of Colon Cancer

    Get PDF
    Although some studies described the characteristics of colon cancer stem cells (CSCs) and the role of endothelial progenitor cells (EPCs) in neovascularization, it is still controversial whether an interaction exists or not between CSCs and EPCs. In the present study, HCT116 and HT29 sphere models, which are known to be the cells enriching CSCs, were established to investigate the roles of this interaction in development and metastasis of colon cancer. Compared with their parental counterparts, spheroid cells demonstrated higher capacity of invasion, higher tumorigenic and metastatic potential. Then the in vitro and in vivo relationship between CSCs and EPCs were studied by using capillary tube formation assay and xenograft models. Our results showed that spheroid cells could promote the proliferation, migration and tube formation of EPCs through secretion of vascular endothelial growth factor (VEGF). Meanwhile, the EPCs could increase tumorigenic capacity of spheroid cells through angiogenesis. Furthermore, higher microvessel density was detected in the area enriching cancer stem cells in human colon cancer tissue. Our findings indicate that spheroid cells possess the characteristics of cancer stem cells, and the coaction of CSCs and EPCs may play an important role in the development of colon cancer
    corecore