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Abstract. We propose and analyze a pseudotransient continuation algorithm for dynamics
on subsets of RN . Examples include certain flows on manifolds and the dynamic formulation of
bound-constrained optimization problems. The method gets its global convergence properties from
the dynamics and inherits its local convergence properties from any fast locally convergent iteration.
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1. Introduction. In this paper we extend algorithms and convergence results
[9, 12, 13, 15, 24] for the method of pseudotransient continuation (Ψtc) to a class of
constrained problems in which projections onto the feasible set are easy to compute.
Such constraints arise in inverse eigenvalue and singular value problems [7, 8], where
Ψtc is an efficient alternative to a fully time-accurate geometric integration [14], for
which theory is only available for fixed time-step methods. The objective of Ψtc is
not to stay on the manifold with high precision but rather to move rapidly to the
steady state.

The algorithms we propose use the projection and can hence be applied to other
classes of problems. Bound-constrained optimization is one example [22] and we
explore that in this paper as well. The results in this paper may also be applicable to
more general problems on manifolds [1] if the relevant projections can be approximated
efficiently, and this will be the subject of future work.

Ψtc was originally designed as a method for finding steady-state solutions to
time-dependent differential equations. The idea is to mimic integration to the steady
state while managing the “time step” to move the iteration as rapidly as possible
to Newton’s method. This is different from the standard approach in an algorithm
for initial value problems [2], where the time step is controlled with stability and
accuracy in mind. Ψtc also differs from traditional continuation methods in that
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the objective is to find a steady-state solution, not, as is the case for pseudoarclength
continuation [20], to track that solution as a function of another parameter. Homotopy
methods [31] also introduce an artificial parameter to solve nonlinear equations but
not in a way that is intended to capture dynamic properties, such as stability, of the
solution.

In the remainder of this section, we will briefly review Ψtc. We refer the reader
to [9, 12, 13, 15, 24] for the existing convergence results and references to applications.

In section 2 we will describe an algorithm for constrained Ψtc and prove a con-
vergence theorem which not only allows for constraints but has a weaker stability
assumption than was used in [9, 13, 24] and includes more general assumptions on the
iteration itself. We close section 2 with some remarks on applications of the theory. In
section 3, we will show how the new form of Ψtc can be applied to bound-constrained
optimization in a way that maintains superlinear convergence in the terminal phase
of the iteration. In section 4 we apply the methods to two example problems.

1.1. Ψtc for nonlinear equations. The formulation for ODE dynamics is the
easiest to understand and is sufficient for this paper. Suppose F : RN → RN is
Lipschitz continuously differentiable and

u∗ = lim
t→∞

u(t),(1.1)

where u is the solution of the initial value problem

du

dt
= −F (u), u(0) = u0.(1.2)

We will refer to (1.1) as a stability condition in what follows, and it is a property of
both F and the initial point u0. The objective of the algorithms we discuss in this
paper is to find u∗.

One might try to find u∗ by solving the nonlinear equation F (u) = 0 with a
globalized version of Newton’s method [21, 23]. The danger is that one may find
a solution other than u∗ and even a solution that is dynamically unstable. One
could also use an ODE code to accurately integrate the initial value problem (1.2)
to the steady state. The problem with this latter approach is that one is accurately
computing transient behavior of u that is not necessarily needed to compute u∗.

The most common form of Ψtc is the iteration

u+ = uc −
(
δ−1
c I + F ′(uc)

)−1
F (uc),(1.3)

where, as is standard, uc is the current iteration, δc the current time step, and u+

the new iteration. The “time step” δ is managed in a way that captures important
transients early in the iteration but grows near u∗ so that (1.3) becomes Newton’s
method. One common way to control δ is “switched evolution relaxation” (SER) [29].
In SER the new time step is

δ+ = min(δc‖F (uc)‖/‖F (u+)‖, δmax).(1.4)

Using δmax = ∞ is common, in which case δ+ = δ0‖F (u0)‖/‖F (u+)‖. We will refer
to the updated formula (1.4) as SER-A, to distinguish it from (1.5).

The existing convergence theory applies only to SER-A, but there are other ap-
proaches, and we will discuss two. A variation of SER, which we call SER-B, was
proposed in [19]. The formula for the time step is

δ+ = max(δc/‖u+ − uc‖, δmax).(1.5)
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In section 2.1.1, we show how SER-B can be modified so that the convergence theory
applies in the case of certain gradient flows.

The temporal truncation error approach (TTE) [25] estimates the local truncation

error of (u)i(tn), the ith component of u(tn) ∈ RN , by τi ≡ δ2
n(u)′′i (tn)

2 , approximates
(u)′′i by

2

δn−1 + δn−2

[
((u)i)n − ((u)i)n−1

δn−1
− ((u)i)n−1 − ((u)i)n−2

δn−2

]
,(1.6)

and computes δn by setting τi = 3/4 for all i. In section 4 we will compare the three
methods for time-step management. The good performance of SER-B and TTE raises
interesting research questions.

One way to see how Ψtc and temporal integration are related is to derive Ψtc
from the implicit Euler method. The formula for an implicit Euler step is un+1 =
un − δnF (un+1), where un is the approximation to u at tn and δn = tn+1 − tn is the
nth time step. If we determine un+1 by taking a single Newton step for the nonlinear
equation G(u) ≡ u− un + δnF (u) = 0, with un as the initial iterate, then we obtain
(1.3).

2. Constrained Ψtc . Let F be Lipschitz continuous, and assume that u(t) ∈ Ω
for all t ≥ 0, where Ω ⊂ RN . Examples of such constrained dynamics are flows where
F is the projected gradient onto the tangent space of Ω at u, and our two examples are
such flows. One should not expect a general purpose integrator to keep the solutions
in Ω, and we use a projection to correct after each step to keep the iterations in Ω.

Let P be a Lipschitz continuous projection onto Ω. Our assumptions on P are as
follows.

Assumption 2.1.

1. P(u) = u for all u ∈ Ω.
2. There are MP and εP such that for all u ∈ Ω and v such that ‖v − u‖ ≤ εP

‖P(v) − u‖ ≤ ‖v − u‖ + MP‖v − u‖2.(2.1)

Assumption 2.1 is trivially true if Ω is convex and P is the projection onto Ω, for
then P is Lipschitz continuous with Lipschitz constant 1, so MP = 0. If Ω is a smooth
manifold of the form Ω = {u | F(u) = 0} where F : RN → RM with M < N , and
P is smooth, then ‖P ′(u)‖ = 1, which will imply (2.1). Note that we are making no
explicit assumptions on Ω, only assumptions on the existence of P and its properties.

We will consider a Ψtc iteration of the form

u+ = P
[
uc −

(
δ−1
c I + H(uc)

)−1
F (uc)

]
,(2.2)

where H is an N × N matrix-valued function of u. We will assume that H is a
sufficiently good approximation to F ′ (or, in the semismooth case, sufficiently close
to ∂F ) to make the iteration locally convergent. The theory we will develop applies
equally well to the inexact formulation u+ = uc + s, where

‖(δ−1
c I + H(uc))s + F (uc)‖ ≤ ηc‖F (uc)‖.(2.3)

The “forcing term” ηc could be, for example, the termination tolerance in a linear
iterative method for computing the step [10, 21]. The forcing term has a well-known
effect on convergence analysis, which is reflected in (2.11).
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Assumption 2.2.

1. There are MH , εH > 0 such that

‖H(u)‖ ≤ MH for all u ∈ S(εH) =

{
z | inf

t≥0
‖z − u(t)‖ ≤ εH

}
.(2.4)

For all ε > 0 there is ε̄ > 0 such that if u ∈ S(εH) and ‖u− u∗‖ > ε, then

‖F (u)‖ > ε̄.(2.5)

2. There is εL so that if ‖uc − u∗‖ ≤ εL, then H(uc) is nonsingular,

‖(I + δH(uc))
−1‖ ≤ (1 + βδ)−1, for some β > 0 and all δ ≥ 0,(2.6)

and the local Newton iteration

uNL
+ = uc −H(uc)

−1F (uc)(2.7)

reduces the error by a factor r ∈ [0, 1) for all uc ∈ Ω sufficiently near u∗, i.e.,

‖eNL
+ ‖ ≤ r‖ec‖.(2.8)

One new feature in Assumption 2.2 is the local nonlinear iteration, which is
general enough to allow for Gauss–Newton methods (and quasi-Newton methods, see
section 2.1.3). Note that the convergence rate for the local iteration is expressed
in terms of the underlying unprojected Newton-like method (2.7). The assumption
we must make (2.8) on the unprojected iteration can be verified in the examples we
consider in section 4.

Theorem 2.1 extends previous work in several ways. The smoothness assumptions
on F are relaxed, the projection is introduced to handle constrained dynamics, H is
constrained only by the local convergence behavior of the Newton-like iteration (2.7),
so superlinear convergence is not required, and (2.6) need only hold in a neighborhood
of u∗.

Theorem 2.1. Let F be locally Lipschitz continuous, and assume that

lim
t→∞

u(t) = u∗

and that Assumptions 2.1 and 2.2 hold. Let the sequence {δn} be updated with (1.4).
Assume that there is δ∗ > 0 such that

MPεL/β < δ∗ ≤ δn(2.9)

for all n. Assume that the q-factor r in (2.8) satisfies

r < ((1 + MPεL) − (1 + βδ∗)−1)/2,(2.10)

where β is the constant in (2.6). Then if δ0 and the sequence {ηn} are sufficiently
small, the inexact Ψtc iteration un+1 = P(un + sn), where ‖(δ−1

n I + H(un))sn +
F (un)‖ ≤ ηn‖F (un)‖ converges to u∗. Moreover, there is K > 0 such that for n
sufficiently large

‖en+1‖ ≤ ‖eNL
n+1‖ + K‖en‖

(
ηn + δ−1

n

)
.(2.11)
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Proof. We will prove the result for the exact (ηn = 0) iteration with δmax = ∞ in
(1.4). The complete proof is based on the same ideas but requires more bookkeeping.
The outline of the proof follows those in [9, 13, 24].

We begin with the global phase. We wish to prove that, while u is out of the local
convergence region for the iteration (2.7), the iteration remains close to the solution
of the differential equation, i.e., in S(ε) for a sufficiently small ε. Only (1.1), the lower
bound δn ≥ δ∗, Lipschitz continuity of F , and Part 2.2 of Assumption 2.2 are needed
for this stage of the analysis. Having done this, we address the local phase, where δ
is small and u is near u∗. We will use the rest of Assumption 2.2 to prove the local
convergence estimate (2.11).

Let ε < min(εL, εH). We may reduce ε as the proof of the local convergence
progresses. The first step is to show that if δ0 is sufficiently small, then

‖un − u∗‖ < ε(2.12)

for sufficiently large n. To do this we need only verify that, for δ sufficiently small,(
δ−1I + H(un)

)−1
= δI + O

(
δ2
)
,(2.13)

and obtain upper and lower bounds on δn/δ0 while (2.12) fails to hold.
The estimate (2.13) follows from (2.4) if δ < 1/(2MH). To obtain bounds for δn,

we can apply the update formula (1.4) and (2.5) to show that while un ∈ S(εH) and
‖un − u∗‖ > ε/2, then

δ∗ ≡ δ0‖F (u0)‖/maxu∈S(εH) ‖F (u)‖

≤ δn = δ0‖F (u0)‖/‖F (un)‖ ≤ 2δ0‖F (u0)‖/CF ε.
(2.14)

Equation (1.4) with δmax = ∞ and our lower bound on δ imply that

δ∗ ≤ δn ≤ ‖F (u0)‖δ0
‖F (un)‖ ≤ 2δ0‖F (u0)‖

CF ε
.(2.15)

Hence, for δ0 sufficiently small, (2.13) holds if (2.12) does not.
With (2.13) in hand, we see that either (2.12) holds or

un+1 = P(un − δF (un)) + O
(
δ2
)
,(2.16)

where the constant in the O-term is independent of n. Now, if u ∈ Ω, then Lipschitz
continuity of P implies that

P
(
u−

(
δ−1I + H(u)

)−1
)
F (u) = P(u− δF (u)) + O

(
δ2
)
.

Euler’s method, un+1 = un − δF (u), has the same local truncation error as un+1 =
P(un − δF (u)), because u(t) ∈ Ω for all t [26]. To see this, we note that

P(u(t) − δF (u(t))) = P
(
u(t + δ) + O

(
δ2
))

= u(t + δ) + O
(
δ2
)
.

Now let T be such that ‖u(t) − u∗‖ < ε/2 for all t ≥ T , and let N∗ be the least
integer ≥ T/δ∗. The standard analysis for the forward Euler method [2] implies that
there is CE such that

‖un − u(tn)‖ ≤ CE max
1≤k≤n

δk ≤ 2CEδ0‖F (u0)‖
CF ε

for all n ≤ N∗. In particular, ‖un−u∗‖ ≤ ε for all n ≥ N∗ if δ0 ≤ (CF ε
2)/(4CE‖F (u0)‖).
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For the local phase, assume that n ≥ N∗. Hence, (2.12) holds. We need to show
that ‖en+1‖ < ‖en‖ and that δn+1 > δn. Once those things are done, we can complete
the proof with a simple calculation.

Define vn+1 = un − (δ−1
n I + H(un))−1F (un), and note that (H(un)−1 − (δ−1

n I +
H(un))−1) = (I + δnH(un))−1H(un)−1. Hence

vn+1 = un −H(un)−1F (un) + (H(un)−1 − (δ−1
n I + H(un))−1)F (un)

= uNL
n+1 + (I + δnH(un))−1H(un)−1F (un)

= uNL
n+1 − (I + δnH(un))−1

(
uNL
n+1 − un

)
,

and therefore un+1 = P(vn+1) = P(uNL
n+1 − (I + δnH(un))−1(eNL

n+1 − en)).
We use (2.1) to conclude that

en+1 = P(vn+1) − u∗ = P
(
uNL
n+1 − (I + δnH(un))−1

(
eNL
n+1 − en

))
− u∗

= P
(
uNL
n+1 − (I + δnH(un))−1

(
eNL
n+1 − en

))
− P(u∗).

So, since ε < εL,

‖en+1‖ ≤ (1 + MPεL)
(
‖eNn+1‖ + ‖(I + δnH(un))−1‖

(
‖eNL

n+1‖ + ‖en‖
))

≤ (1 + MPεL)
(
2r + (1 + βδ∗)

−1
)
‖en‖.

This completes the proof since (1 + MPεL)(2r + (1 + βδ∗)−1) < 1 by (2.9). Hence,
the iteration converges at least locally q-linearly. Formula (1.4) then will imply
(2.11).

2.1. Remarks. Even in the unconstrained case (where P(u) = u for all u ∈ RN )
Theorem 2.1 extends the results from [9, 13, 24] by replacing the semismoothness and
the inexact Newton condition with a general condition on the convergence of the local
iteration. If the stability condition (1.1) holds, then Ψtc with SER is a convergent
iteration for unconstrained optimization, even if one does not use exact Hessians.

2.1.1. Control of δ with f for gradient flows. The key parts to the proof of
Theorem 2.1 are showing that the time step remains small until un is near the solution
and that the step will grow at that time. The way this is done in the case of SER-A is
to note that (1.4) implies that if un is not close to u∗, then δn is bounded from above
and below by constant multiples of δ0, and hence the method is an accurate temporal
integration. Then, once near u∗, (2.6) drives un to u∗ and δn to δmax.

One can augment the time-step control method in several ways without affecting
the theory. If the dynamics are a gradient flow, then one can reject the step if f is
increased, reduce δ, and try again. As long as δ is bounded from above and below
by constant multiples of δ0 and the number of reductions is bounded, the global
convergence assertion un → u∗ will hold. If one accepts the SER-A formula only
when f decreases, then the local theory will be unchanged and Theorem 2.1 will hold.
One can also apply this idea to SER-B and TTE but must take care that increases in
δ are not too large to maintain the resolution of the dynamics while u(t) is far from
u∗. One way to do this is to accept the SER-B or TTE step only if f decreases and
limit the size of the increases in δ to factors of two at each iteration.

Another approach is the trust-region method from [15], and the proof of The-
orem 2.1 extends to that method. Here δmax = ∞ and the increase in δ at each
iteration is limited.
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2.1.2. Semismooth nonlinearities. If F is semismooth, which is the case con-
sidered in [13], and H(un) ∈ ∂F (un), then the local iteration (2.7) is superlinearly
convergent, if all matrices in ∂F (u∗) are nonsingular. Hence, we may recover the
results from [13] from Theorem 2.1, the extension to DAE dynamics being the same
as that in [13] and not relevant to this paper.

2.1.3. Quasi-Newton methods. The proof of Theorem 2.1 can be modified
to allow a quasi-Newton [11, 22] model Hessian. This modification simply replaces
the dependence of H on un with one on the history of the iteration and makes the
assumptions of boundedness of Hn and convergence of the local iteration. The re-
sulting modified proof would be somewhat longer, and, since our examples are not
quasi-Newton iterations, we used the shorter and simpler proof in this paper.

Unlike Newton or Gauss–Newton iterations, one must assume (rather than verify)
the convergence of the local iteration. The reason for this is that local convergence
of quasi-Newton methods requires that both the initial iterate and the initial model
Hessian be good approximations to the solution and the Hessian at the solution. The
global theory [5] requires a line search and convex level sets, neither of which is a part
of the Ψtc methods we propose.

2.1.4. Gauss–Newton iteration. If F (u) = ∇f(u) = R′(u)TR(u) is the gradi-
ent of a nonlinear least squares functional f(u) = R(u)TR(u)/2, where R : RN → RM ,
with M > N , we may let H be the Gauss–Newton model Hessian H(u) = R′(u)TR′(u)
and apply Theorem 2.1 if R′ has full column rank at the minimizer. Moreover, many
of the assumptions can be verified with ease in this case. If u(t) → u∗, which we still
must assume, then H(u∗) is symmetric and positive definite, so (2.6) holds. Moreover
δ−1I+H(u) is nonsingular for all δ > 0 and all u, because H(u) is always nonnegative
definite. For a zero-residual problem, the estimate (2.10) will hold because the local
iteration converges q-quadratically if R is Lipschitz continuously differentiable. In
this case, Ψtc is a version of the Levenberg–Marquardt method, where the parameter
is selected based on the norm of the gradient rather than with a trust region scheme.
Similar ideas for selection of the parameter have been made [22].

3. Bound-constrained optimization. The bound-constrained optimization
problem is

min
Ω

f(u),(3.1)

where Ω = {u |L ≤ u ≤ U}, and the inequalities are componentwise.
In order to describe necessary conditions and formulate the algorithms, we must

recall some notation from [4, 22, 27].
The l2 projection onto Ω is P, where

P(u)i = max(Li,min(Ui, (u)i)).(3.2)

Here (u)i denotes the ith component of the vector u ∈ RN . P trivially satisfies
Assumption 2.1 because Ω is convex.

We will assume that f is Lipschitz continuously differentiable. In that case, the
first-order necessary conditions for optimality are [4, 22]

F (u) = u− P(u−∇f(u)) = 0.(3.3)

Equation (3.3) is a semismooth nonlinear equation. Fast locally convergent methods
include the semismooth Newton, methods of [30], and the projected Newton or scaled
gradient projection methods [4, 22, 27].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3078 KELLEY, LIAO, QI, CHU, REESE, AND WINTON

Consistent with the unconstrained case, the gradient flow equations are [26]

du

dt
= −F (u), u(0) = u0,(3.4)

where in this case, F is defined by (3.3). If we let u0 ∈ Ω, then the solution of (3.4)
satisfies

lim
t→∞

F (u(t)) = 0.(3.5)

We will also assume that (1.1) holds. Since dynamics [26] force u(t) ∈ Ω for all t and
Ω is bounded, then if there are only finitely many solutions of F (u) = 0 in Ω, (1.1)
will hold for all u0 ∈ Ω in this case.

We may apply Theorem 2.1 directly, once we describe the maps H(u) and show
that (2.8) holds. We use known results [4, 22, 27] from optimization to do this.

One choice of H(u) is the reduced Hessian. Letting u ∈ Ω and 0 ≤ σ < min(Ui −
Li)/2, we define the set of σ-binding constraints as

Bσ(u) = {i | Ui − (u)i ≤ σ and (∇f(u))i < −
√
σ or

(u)i − Li ≤ σ and (∇f(u))i >
√
σ}.

For N ⊂ {1, 2, . . . N} we define D(N ) as the diagonal matrix with entries

D(N )ii =

{
1 i ∈ N ,
0 i �∈ N

and define the reduced Hessian as

R̄f(u) = I −D(B0(u))(I −∇2f(u))D(B0(u)).(3.6)

The second-order sufficiency conditions for a point u∗ to be a local minimizer are [27]
that F (u∗) = 0 and R̄f(u∗) is positive definite. We will assume that u∗ satisfies the
second-order sufficiency conditions in what follows.

One must approximate the bounding constraints carefully in order to obtain a
superlinearly convergent iteration. One way to do this [22, 27] is to let

H(u) = I −D(Bσ(u))
(
I −∇2f(u)

)
D(Bσ(u)),(3.7)

where σ(u) = ‖u−P(u−∇f(u))‖. With this choice the local iteration satisfies (2.8).
In the case of a small residual bound-constrained nonlinear least squares problem, we
may replace ∇2f(u) with the Gauss–Newton model Hessian.

4. Examples. In this section we present two examples. The first is a nonlinear
equation on a manifold, which is a gradient flow of an inverse singular value problem.
The projection is more subtle in this case, and we describe it in detail in section 4.1.1.

The second is a nonlinear bound-constrained least squares problem for which we
compare the three variants of Ψtc (SER-A, SER-B, and TTE) with the trust-region
method (lmtr) from [15], which in the nonlinear least squares case is a classic trust-
region method [11, 22], and the damped Levenberg–Marquardt algorithm (lmls) from
[22]. The projection in this case is trivial to compute, and we use the reduced Gauss–
Newton model Hessian instead of ∇2f in (3.7). This example is a small artificial
problem, which enables us to consider the cases where the minimizer is in the interior
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of the feasible set, on the boundary (and hence degenerate in the sense that the
binding constraints are a proper subset of the active constraints), and outside of the
feasible set (and therefore a nonzero residual problem). In this example we do not
increase δ unless f decreases, and we manage δ with the approach in section 2.1.1.
All of the Ψtc methods, and especially SER-B and TTE, work much better if we do
that.

In all of the examples, SER-B performs very well.

4.1. Inverse singular value problem. The inverse singular value problem [7]
is to find c ∈ RN so that the M ×N matrix

B(c) = B0 +

N∑
k=1

ckBk

has prescribed singular values {σi}Ni=1. This is one example of a wide class of inverse
eigenvalue and singular value problems for which a dynamic formulation is useful [8].

One can assume without loss of generality that the matrices {Bi}Ni=1 are orthonor-
mal with respect to the Frobenius inner product and then formulate the problem as
a constrained nonlinear least squares problem

min Ψ(U, V ) ≡ ‖R(U, V )‖2
F(4.1)

for M × M and N × N matrices U and V , subject to the constraint that U and V
be orthogonal. If one finds a solution with a zero residual, then one has solved the
original problem. This is not always possible, as the original problem may not have
a solution [6]. In (4.1) the residual is

R(U, V ) = UΣV T −B0 −
N∑

k=1

〈UΣV T , Bk〉Bk,

where 〈·, ·〉 is the Frobenius inner product.
If we let Ω denote the manifold of pairs of M×M and N×N orthogonal matrices,

then the projection of ∇Ψ onto the tangent space of Ω at (U, V ) ∈ Ω is

g(U, V ) =
1

2

( (
R(U, V )V ΣTUT − UΣV TR(U, V )T

)
U(

R(U, V )TUΣV T − V ΣTUTR(U, V )
)
V

)
.

The gradient flow equations for the problem are of the form (1.2) with

F (u) = g(U, V ), where u =

(
U
V

)
.(4.2)

Since F (u) is in the tangent space of Ω at u [7], the solution of (1.2) is in Ω if u0 ∈ Ω.
Since g is analytic in u, the results of [28] will apply, and so (1.1) holds for all initial
vectors u0 ∈ Ω.

4.1.1. The projection onto Ω. The projection of an N × N matrix A onto
the manifold of orthogonal matrices [17, 18] A → UP . Here A = UPHP , with UP

orthogonal and HP symmetric positive semidefinite, is a polar decomposition of A.
HP is unique. UP is unique if A is nonsingular. In this case (2.1) will hold. Since S(ε)
is near a curve of orthogonal matrices, which have full rank, the possible singularity
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of A is not an issue for us. One can compute UP directly from the singular value
decomposition A = UΣV T of A as UP = UV T . This is efficient when A is small. For
large A, there are several efficient iterative methods [16, 18].

So, in the context of this paper, given a pair of N ×N matrices w = (A,B)T ,

P(w) =

(
UA
P

UB
P

)
,

where UA
P and UB

P are the orthogonal parts of the polar decompositions of A and B.

4.1.2. Convergence of the local method. In this section we will verify that
(2.8) holds. The local method uses the reduced Gauss–Newton model Hessian, which
requires the projection PT (u) onto the tangent space at a point u ∈ Ω. One can
compute that projection by noting that if w(t) is a differentiable orthogonal matrix-
valued function, then differentiating wT (t)w(t) = I,

dw(t)Tw(t)

dt
= ẇ(t)Tw(t) + w(t)T ẇ(t) = 0,

and hence wT ẇ is skew-symmetric. This implies that the tangent space for the man-
ifold of orthogonal matrices at a point U is the space of matrices W for which UTW
is skew-symmetric. The projection onto the tangent space can then be computed as
follows. If {Si} is a Frobenius-orthonormal basis for the skew-symmetric matrices,
then a Frobenius-orthonormal basis for the tangent space is {USi}, which we can use
to compute the projection. If we do this for each component of u = (U, V )T , we
obtain PT (u). Alternatively we could use

PT (u) = P ′(u) for all u ∈ Ω ,(4.3)

which follows from the fact that P is a map-to-nearest.
The local method for F (u) = 0 uses H(u) = (I − PT (u)) + PT (u)F ′(u)PT (u),

and we will show that uNL
+ = uc −H(uc)

−1F (uc) satisfies ‖eNL
+ ‖ = O(‖ec‖2), which

implies (2.8) and will allow us to apply Theorem 2.1. We do this by noting that for
all u ∈ Ω

F (u) = PT (u)F (u) = PT (u)F ′(u)e + O
(
‖e‖2

)
= H(u)e− (I − PT (u))e + PT (u)F ′(u)(I − PT (u))e + O

(
‖e‖2

)
= H(u)e + O

(
‖(I − PT (u))e‖ + ‖e‖2

)
.

(4.4)

If u ∈ Ω is near u∗, then we can use (4.3) and the Lipschitz continuity of P to
conclude that

u = P(u) = P(u∗) + P ′(u)e + O
(
‖e‖2

)
= PT (u)e + O

(
‖e‖2

)
,

and so (I−PT (u))e = O(‖e‖2). Hence uNL
+ −u∗ = uc−u∗−H(uc)

−1F (uc) = O(‖ec‖2).

4.1.3. Computations. We take the example from [7], having orthonormalized
the matrices {Bj}4

j=0 with classical Gram–Schmidt and the Frobenius inner product.
In Figure 4.1 we compare the relative performance of the three time-step management
strategies SER-A, SER-B, and TTE. While TTE does poorly, it is interesting to see
that both versions of SER do well.

We did not reduce δ to respond to increases in ‖Ψ‖ in this example, and the
SER-A and SER-B iterations still converged well.
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Fig. 4.1. Inverse singular value problem.

4.2. Inverse problem. This small (N = 2) example is taken from [3, 22]. We
seek to identify the damping coefficient c and spring constant k for a simple harmonic
oscillator. The governing differential equation is

w′′ + cw′ + kw = 0; w(0) = w0, w
′(0) = 0(4.5)

on the interval [0, 1]. We let u = (c, k)T and fit samples of the exact solution at 100
equally spaced points. We let c = k = 1 be the parameter values for the true solution
and use ode15s from MATLAB to integrate (4.5) with the approximate parameters.
The relative and absolute error tolerances were 10−6.

The function to be minimized is

f(u) =
1

2
R(u)TR(u) =

1

2

100∑
i=1

(wexact(ti) − wi(u))2,

where ti = i/100, wi(u) is the solution returned by ode15s with u = (c, k)T , and
wexact is the solution of (4.5) with (c, k) = (1, 1). The upper bounds are [10, 10], and
we consider three cases for the lower bounds: [0, 0], placing the global minimizer in
the interior of the feasible region, [1, 0], placing the global minimizer on the boundary,
and [2, 0], placing the global minimizer outside. In the last case the solution of the
unconstrained zero-residual problem does not satisfy the bound constraints. The
residual at the optimal point for the constrained problem is 21.5.

The initial iterate in all cases was (c, k) = (10, 10). In this computation we set
δ0 = 1/100 and terminate the continuation when either the norm of the projected
gradient ‖F‖ has been reduced by a factor of 103 or f < 10−6.

In Figure 4.2 we plot the values of f and ‖F‖ as functions of the iteration count
for several variations of Ψtc : SER-A (ser-a), SER-B (ser-b), TTE (tte), and the
trust-region Levenberg–Marquardt method lmtr from [15]. We also compare them
with the Levenberg–Marquardt line search method (lmls) from [22]. For SER-A,
SER-B, and TTE, we rejected any step that increased the residual and decreased the
time step by factors of 2 until either the residual decreased or dt = 10−4. In the latter
case we terminated the iteration.
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Fig. 4.2. Parameter ID example.

The damped Levenberg–Marquardt method from [22] is not as effective as the
other four approaches, and SER-B is consistently better than the others.

5. Conclusions. We have described and analyzed a generalization of the pseudo-
transient continuation algorithm which can be applied to a class of constrained non-
linear equations. The new approach can be applied to bound-constrained problems
and to certain inverse eigenvalue and singular value problems.

We have reported on numerical testing which illustrates the performance of the
method.
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