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Abstract

In this article, we investigate the uniqueness problems of difference operators of two
meromorphic functions. Uniqueness of a meromorphic function fn and its difference
operator with the same 1-points and poles is also proved.
2000 Mathematics Subject Classification: Primary 30D35; Secondary 39B32.

Keywords: uniqueness, difference operator, meromorphic function

1. Introduction and main results
In this article, a meromorphic function always means meromorphic in the whole com-

plex plane, and c always means a non-zero constant. For a meromorphic function f(z),

we define its shift by f(z + c), and define its difference operators by

�cf (z) = f (z + c) − f (z) and �n
c f (z) = �n−1

c (�cf (z)), n ∈ N, n ≥ 2.

We adopt the standard notations of the Nevanlinna theory of meromorphic functions

such as T(r, f), m(r, f), N(r, f) and N(r, f ) as explained in [1-3]. In addition, we use

N2

(
r,
1
f

)
to denote the counting function of the zeros of f(z) such that simple zeros

are counted once and multiple zeros twice.

Let f(z) and a(z) be two meromorphic functions. We say that a(z) is a small function

with respect to f(z) if T(r, a) = S(r, f), where S(r, f) = o(T(r, f)), as r ® ∞ outside of a

possible exceptional set of finite logarithmic measure. For a small function a(z) related

to f(z), we define

δ(a, f ) = lim inf
r→∞

m
(
r,

1
f − a

)
T(r, f )

.

Let f(z) and g(z) be two meromorphic functions, and let a(z) be a small function with

respect to f(z) and g(z). We say that f(z) and g(z) share a(z) IM, provided that f(z) - a(z)

and g(z) - a(z) have the same zeros (ignoring multiplicities), and we say that f(z) and g

(z) share a(z) CM, provided that f(z) - a(z) and g(z) - a(z) have the same zeros with the

same multiplicities.

Recently, a number of articles including [4-10] have focused on value distribution in

difference analogues of meromorphic functions. In particular, there has been an

increasing interest in studying the uniqueness problems related to meromorphic
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functions and their shifts or their difference operators (see, e.g., [8-13]). Some of them

(see, e.g., [9,10]) dealt with the uniqueness problems on the case that shifts or differ-

ence polynomials of two entire functions share a small function. Our aim in this article

is to investigate the uniqueness problems of difference operators of meromorphic

functions.

To begin the statement of our results, we recall the following Theorem A (see [3]),

which is an improvement of an original result of Shibazaki [14].

Theorem A ([[3], Theorem 9.16]). Let f and g be non-constant entire functions. If f’

and g’ share 1 CM, and δ(0, f) + δ(0, g) > 1, then f ≡ g or f’g’ ≡ 1.

Qi and Liu [9] considered the case that shifts of two entire functions share a small

function. They proved

Theorem B ([[9], Theorem 5]). Suppose that f and g are two entire functions of finite

order, and let a and b be distinct small functions related to f and g such that δ(a) =

δ(a, f) + δ(a, g) > 1. If f(z + c1) and g(z + c2) share b CM, then exactly one of the follow-

ing assertions holds

(i) f(z) ≡ g(z + c), where c = c2 - c1;

(ii) f(z + c1) ≡ (a - b)eh + a, g(z + c2) ≡ (a - b)e-h + a, where h(z) is an entire

function.

As a difference analogue of Theorem A, we prove the following Theorem 1.1, whose

proof is omitted as it is similar as the proof of Theorem 1.2.

Theorem 1.1. Let f(z) and g(z) be entire functions of finite order, and leta(z)( �≡ 0)be

a small entire function with respect to f(z) and g(z). Suppose that c1, c2 Îℂ\{0} such
that �c1 f (z) · �c2g(z) �≡ 0. If �c1 f (z)and �c2g(z)share a CM, and δ(0) = δ(0, f) + δ(0, g)

> 1, then one of the following assertions holds:

(i) �c1 f (z) ≡ �c2g(z);

(ii) �c1 f (z) ≡ −a(z)eh(z),�c2g(z) ≡ −a(z)e−h(z), where h(z) is a polynomial.

We consider the case that c1 = c2 and obtain the following Theorem 1.2, which is an

extension of Theorem 1.1 for this case.

Theorem 1.2. Let f(z) and g(z) be entire functions of finite order, and let a(z) and b

(z) be small entire functions with respect to f(z) and g(z). Suppose that c Î ℂ\{0} such

that �c(f − b) · �c(g − b) · (a − �cb) �≡ 0. If Δcf(z) and Δcg(z) share a CM, and δ(b) =

δ(b, f) + δ(b, g) > 1, then one of the following assertions holds:

(i) Δcf(z) ≡ Δcg(z);

(ii) Δcf ≡ (Δcb - a)eh(z) + Δcb, Δcg ≡ (Δcb - a)e-h(z) + Δcb, where h(z) is a polynomial.

Example 1. We list three examples to show that there exist entire functions satisfy-

ing the cases in Theorems 1.1 and 1.2.

(1) Let f(z) = (z + 1)ez, g(z) = zez, and c1 = c2 = 2πi. Then δ(0) = δ(0,f) + δ(0,g) > 1,

and for any a Î ℂ, �c1 f (z) and �c2g(z) share a CM, and we have

�c1 f (z) ≡ �c2g(z). This example satisfies Theorems 1.1(i) and 1.2(i).
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(2) Let f(z) = ez, g(z) = -e(e + 1)e-z, c1 = 2, and c2 = 1. Then δ(0) = δ(0, f) + δ(0, g) >

1, and for a = 1 - e2, �c1 f (z) and �c2g(z) share a CM, and we have �c1 f (z) ≡ −aez

and �c2g(z) ≡ −ae−z. This example satisfies Theorem 1.1(ii).

(3) Let f(z) = -ez + 2, g(z) = e · e-z + 2, and c = 1. Then δ(2) = δ(2, f) + δ(2, g) > 1,

and for a = e - 1, Δcf(z) and Δcg(z) share a CM, and we have Δcf(z) ≡ -aez and Δcg

(z) = -ae-z. This example satisfies Theorem 1.2(ii).

Now an interesting question is whether the deficiency condition in Theorem 1.1 can

be replaced by other condition or not. Considering this question, we prove the follow-

ing result, which is an improvement of Theorem 1.4 in [12].

Theorem 1.3. Let c1, c2 Î ℂ \ {0}. Let f(z) and g(z) be entire functions of finite order

r(f) and r(g), respectively. Suppose that a and b are distinct complex constants. If

�c2g(z)and �c2g(z)share a CM, and �c1 f (z) − b and �c2g(z) − b have at least max{[r
(f)], [r(g)],1} distinct common zeros of multiplicity ≥ 2, then �c1 f (z) ≡ �c2g(z).

Example 2. We give examples (1) and (2) to show that there exist entire functions

satisfying Theorem 1.3. Moreover, Example (3) shows that the condition related to

common zeros cannot be omitted in Theorem 1.3.

(1) Let f(z) = ez log 2 sin2(2πz), g(z) = ez log 2 sin2(2πz) + e2πiz, and c = 1. Then Δcf(z)

≡ Δcg(z) ≡ ez log 2 sin2(2πz). In this example, Δcf(z) and Δcg(z) have infinitely many

distinct common zeros of multiplicity 2.

(2) Let f(z) = ez log 2 sin2(2πz), g(z) =
1
3
ez log 2sin2(2πz), and c1 = 1, c2 = 2. Then

�c1 f (z) ≡ �c2g(z) ≡ ez log 2sin2(2πz). In this example, �c1 f (z) and �c2g(z) have infi-

nitely many distinct common zeros of multiplicity 2.

(3) Let f(z) = zez - z, g(z) = ze-z - z, and c = 2πi. Then Δcf(z) = 2πi(ez - 1) and Δcg(z)

= 2πi(1 - ez)e-z share -2πi CM. However, max{[r(f)],[r(g)],1} = 1, while Δcf(z) and

Δcg(z) have only simple common zeros and �cf (z) �≡ �cg(z).

In 2008, Yang and Zhang [15] considered the uniqueness problems on the mero-

morphic function fn sharing values with its first derivative. One of their results can be

stated as follows.

Theorem C ([[15], Theorem 4.3]). Let f(z) be a non-constant meromorphic function

and n ≥ 12 be an integer. Let F = fn. If F and F’ share 1 CM, then F = F’, and f assumes

the form

f (z) = ce

1
n
z
,

where c is a non-zero constant.

To replace F’ by ΔcF in Theorem C, we prove the following Theorem 1.4.

Theorem 1.4. Let f(z) be a non-constant meromorphic function of finite order and n

≥9 be an integer. Let F(z) = f(z)n. If F(z) and ΔcF share 1, ∞ CM, then F(z) = ΔcF.

For the entire functions case, using the same method as in the proof of Theorem 1.4,

we get the following result.

Theorem 1.5. Let f(z) be a non-constant entire function of finite order and n ≥ 6 be

an integer. Let F(z) = f(z)n. If F(z) and ΔcF share 1 CM, then F(z) = ΔcF.
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Example 3. The following example (1) satisfies Theorem 1.4, while example (2) satis-

fies both Theorems 1.4 and 1.5.

(1) Let
f (z) = e

z
9

log 2
/ sin(2πz)

, n = 9 and c = 1. Then we see that F(z) = f(z)n = ez

log 2/sin9(2πz) and ΔcF(z) = F(z + c) - F(z) = ez log 2/sin9(2πz) share 1, ∞ CM, and F

(z) ≡ Δ cF.

(2) Let
f (z) = 2

1
9 ez

, n = 9 and c =
1
9
log 2. Then we see that F(z) = f(z)n = 2e9z and

ΔcF(z) = F(z + c) - F(z) = 2e9z share 1 CM, and F(z) ≡ ΔcF.

But we still wonder whether the lower bound of n in our results is sharp or not.

2. Proof of Theorem 1.2
Lemma 2.1 ([[7], Lemma 2.3]). Let c Î ℂ, n Î N, and let f(z) be a meromorphic func-

tion of finite order. Then for any small periodic function a(z) with period c, with respect

to f(z),

m
(
r,

�n
c f

f − a

)
= S(r, f ),

where the exceptional set associated with S(r, f) is of at most finite logarithmic

measure.

The proof of Theorem 1.2 is based on a result in [15], which can be read as follows:

Lemma 2.2 ([[15], Theorem 3.1]). Let fj(z)(j = 1,2,3) be meromorphic functions that

satisfy

3∑
j=1

fj(z) ≡ 1.

If f1(z) is not a constant, and

3∑
j=1

N2

(
r,
1
fj

)
+

3∑
j=1

N(r, fj) < (λ + o(1))T(r), r ∈ I,

where 0 ≤ l < 1, T(r) = max1≤j≤3{T(r, fj)}, and I has infinite linear measure, then

either f2(z) ≡ 1 or f3(z) ≡ 1.

Proof of Theorem 1.2. By the condition that δ(b) = δ(b, f) + δ (b, g) > 1, we see

easily that δ(b, f) > 0 and δ(b, g) > 0. Then for any given ε such that

0 < ε < min
{

δ(b, f )
2

,
δ(b, g)

2
,
δ(b) − 1

2

}
, we have

(δ(b, f ) − ε)T(r, f ) ≤ m
(
r,

1
f − b

)
, (2:1)

and

(δ(b, g) − ε)T(r, g) ≤ m
(
r,

1
g − b

)
. (2:2)
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From Lemma 2.1, we see that

m(r,�cf ) ≤ m
(
r,

�cf
f

)
+m(r, f ) = m(r, f ) + S(r, f ). (2:3)

Thus,

T(r,�cf ) = m(r,�cf ) ≤ m(r, f ) + S(r, f ) = T(r, f ) + S(r, f ). (2:4)

On the other hand, by Lemma 2.1, we have

m
(
r,

1
f − b

)
= m

(
r,

�c(f − b)
f − b

· 1
�cf − �cb

)

≤ m
(
r,

1
�cf − �cb

)
+ S(r, f ).

(2:5)

Combining (2.1) and (2.5) gives

(δ(b, f ) − ε)T(r, f ) ≤ m
(
r,

1
f − b

)
≤ m

(
r,

1
�cf − �cb

)
+ S(r, f )

≤ T(r,�cf − �cb) + S(r, f )

≤ T(r,�cf ) + S(r, f ).

(2:6)

Hence, by (2.4) and (2.6), we have S(r, Δcf) = S(r, f). Similarly, S(r, Δcg) = S(r, g).

From (2.1), (2.4) and (2.5), we have

(δ(b, f ) − ε)T(r,�cf ) ≤ (δ(b, f ) − ε)T(r, f ) + S(r, f )

≤ m
(
r,

1
f − b

)
+ S(r, f )

≤ m
(
r,

1
�cf − �cb

)
+ S(r, f )

≤ T(r,�cf ) − N
(
r,

1
�cf − �cb

)
+ S(r, f ).

That is

N
(
r,

1
�cf − �cb

)
≤ (1 − δ(b, f ) + ε)T(r,�cf ) + S(r, f ). (2:7)

By the same reasoning, we have

N
(
r,

1
�cg − �cb

)
≤ (1 − δ(b, g) + ε)T(r,�cg) + S(r, g). (2:8)

Set I1 = {r: T(r, Δcf) ≥ T(r, Δcg)} ⊆ (0, ∞), and I2 = (0, ∞) \I1. Then there exists at

least one of Ii (i = 1, 2), which has infinite logarithmic measure. Without loss of gener-

ality, we may suppose I1 has infinite logarithmic measure.

Since Δcf(z) and Δcg(z) share a CM, we have

�cf (z) − a
�cg(z) − a

= eh(z), (2:9)

where h(z) is a polynomial.
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We rewrite (2.9) as

F1(z) + F2(z) + F3(z) ≡ 1,

where

F1(z) =
�cf − �cb
a − �cb

, F2(z) = −�cg − �cb
a − �cb

eh(z), F3(z) = eh(z).

Set T(r) = max1≤j≤3{T(r, Fj)} and S(r) = o(T(r)). Then

T(r) ≥ T(r, F1) = T(r,�cf ) + S(r, f ).

We deduce from the definition of Fj(z) (j = 1, 2, 3) that

N(r, F1) = N(r, F2) = N
(
r,

1
a − �cb

)
= S(r, f ),

N(r, F3) = 0, N2

(
r,

1
F3

)
= 0.

(2:10)

From (2.7) and (2.8), we have

N2

(
r,

1
F1

)
+N2

(
r,

1
F2

)

≤ N
(
r,

1
�cf − �cb

)
+N

(
r,

1
�cg − �cb

)
≤ (2 − δ(b) + 2ε)T(r,�cf ) + S(r,�cf ), r ∈ I1,

(2:11)

where I1 has infinite logarithmic measure.

Then we get from (2.10) and (2.11) that

3∑
j=1

N2

(
r,

1
Fj

)
+

3∑
j=1

N(r, Fj) ≤ (2 − δ(b) + 2ε)T(r,�cf ) + S(r, f )

≤ (2 − δ(b) + 2ε)T(r) + S(r), r ∈ I1,

where I 1 has infinite logarithmic measure, and also infinite linear measure.

It is obvious that F1 is not a constant. By Lemma 2.2, we have F2(z) ≡ 1 or F3(z) ≡ 1.

If F2(z) = 1, we have

�cg ≡ (�cb − a)e−h(z) + �cb, �cf ≡ (�cb − a)eh(z) + �cb.

If F3(z) ≡ 1, we have eh(z) ≡ 1. By (2.9), the conclusion holds.

3. Proof of Theorem 1.3
Lemma 3.1 ([[6], Theorem 2.1]). Let f(z) be a meromorphic function of finite order r
and let c be a non-zero complex constant. Then, for each ε > 0,

T(r, f (z + c)) = T(r, f ) +O(rρ−1+ε) +O(log r).

Proof of Theorem 1.3. Since �c1 f (z) and �c2g(z) share a CM, we have

�c1 f (z) − a
�c2g(z) − a

= eh(z), (3:1)

where h(z) is a polynomial.
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Then by (3.1) and Lemma 3.1, we deduce that

T(r, eh(z)) = T
(
r,

�c1 f (z) − a
�c2g(z) − a

)
≤ T(r,�c1 f (z)) + T(r,�c2g(z)) +O(1)

≤ T(r, f (z + c1)) + T(r, f (z)) + T(r, g(z + c2)) + T(r, g(z)) +O(1)

≤ 2T(r, f ) + 2T(r, g) + S(r, f ) + S(r, g).

(3:2)

It follows from (3.2) that r(eh(z)) ≤ max{r(f), r(g)}. Clearly, r(eh(z)) = deg h(z) is an

integer. Thus, we deduce that deg h(z) ≤ max{[r(f)], [r(g)]}.
Suppose that h(z) is a constant. Notice that �c1 f (z) − b and �c2g(z) − b have at least

a common zero. Suppose that a point z0 Î ℂ satisfies �c1 f (z0) = �c2g(z0) = b. It fol-

lows from (3.1) that eh(z) ≡ eh(z0) = 1. Thus, �c1 f (z) ≡ �c2g(z).

Suppose that h(z) is not a constant. By taking the derivative in (3.1), we get

�c1 f
′(z) − �c2g

′(z)eh(z) − h′(z)(�c2g(z) − a)eh(z) ≡ 0. (3:3)

Set k = max{[r(f)],[r(g)],1}. Then k ≥ max{[r(f)],[r(g)]} ≥ deg h(z). Notice that

�c1 f (z) − b and �c2g(z) − b have at least k distinct common zeros of multiplicity ≥ 2.

Suppose that zj (j = 1,2,..., k) satisfies

�c1 f (zj) = �c2g(zj) = b,

�c1 f
′(zj) = �c2g

′(zj) = 0.
(3:4)

Then we get from (3.3) and (3.4) that h’(zj) = 0, j = 1,2,..., k. It implies that h(z) is a

polynomial with deg h(z) ≥ k + 1, which is a contradiction since k ≥ deg h(z).

4. Proof of Theorem 1.4
Since f(z) is a non-constant meromorphic function of finite order, then F(z) = f(z)n is a

non-constant meromorphic function of finite order. By Lemma 3.1, we have

T(r, F(z + c)) = nT(r, f (z + c)) = nT(r, f ) + S(r, f ). (4:1)

From (4.1), we see that F(z + c) and ΔcF are meromorphic functions of finite order,

and obviously S(r, F(z)) = S(r, F(z + c)) = S(r, f).

Set
ω = e

2π i
n

. Then by the second main theorem, we have

m
(
r,

1
F(z) − 1

)
= m

(
r,

1
(f (z) − ω0)(f (z) − ω1) · · · (f (z) − ωn−1)

)

≤
n−1∑
j=0

m
(
r,

1
f (z) − ωj

)

≤ 2T(r, f ) − m(r, f ) −
(
2N(r, f ) − N(r, f ′) +N

(
r,

1
f ′

))
+ S(r, f )

≤ T(r, f ) +
(
N(r, f ′) − N(r, f ) − N

(
r,

1
f ′

))
+ S(r, f )

≤ T(r, f ) +N(r, f ) − N
(
r,
1
f ′

)
+ S(r, f )

≤ 2T(r, f ) + S(r, f ).

(4:2)
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Since F(z) and ΔcF share 1, ∞ CM, we have

F(z) − 1
�cF − 1

= eh(z), (4:3)

where h(z) is a polynomial.

By (4.2) and (4.3), we get

T(r, eh(z)) = T(r, e−h(z)) +O(1) = m(r, e−h(z)) +O(1)

= m
(
r,

�cF − 1
F(z) − 1

)
+O(1)

≤ m
(
r,

�cF
F(z) − 1

)
+m

(
r,

1
F(z) − 1

)
+O(1)

≤ S(r, F(z)) + 2T(r, f ) + S(r, f ) = 2T(r, f ) + S(r, f ).

(4:4)

Thus, S(r, eh(z)) = o(T(r, f)).

Now we rewrite (4.3) as

F(z + c) − (eh(z) + 1)e−h(z)F(z) + e−h(z) ≡ 1. (4:5)

Set F1(z) = F(z + c), F2(z) = -(eh(z) + 1)e-h(z) F(z) and F3(z) = e-h(z).

Then

F1(z) + F2(z) + F3(z) ≡ 1

and

T(r) = max
1≤j≤3

{T(r, Fj)} ≥ T(r, F(z + c)) = nT(r, f ) + S(r, f ),

S(r) = o(T(r)).

We easily get

N(r, F2) = N(r, f ) ≤ T(r, f ) + S(r, f ),

N(r, F3) = 0, N2

(
r,

1
F3

)
= 0.

(4:6)

From Lemma 3.1, we get

N(r, F1) = N(r, f (z + c)) ≤ T(r, f (z + c)) + S(r, f (z + c))

= T(r, f ) + S(r, f ),
(4:7)

and

N2

(
r,

1
F1

)
= 2N

(
r,

1
F1

)
= 2N

(
r,

1
f (z + c)

)
≤ 2T

(
r,

1
f (z + c)

)
= 2T(r, f ) + S(r, f ).

(4:8)

By (4.4), we see that

N2

(
r,

1
F2

)
≤ 2N

(
r,
1
F

)
+N

(
r,

1
eh(z) + 1

)

≤ 2N
(
r,
1
f

)
+ T(r, eh(z)) + S(r, eh(z)) +O(1)

≤ 4T(r, f ) + S(r, f ).

(4:9)
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By (4.6)-(4.9), we obtain

3∑
j=1

N2

(
r,

1
Fj

)
+

3∑
j=1

N(r, Fj) ≤ 8T(r, f ) + S(r, f ) ≤ 8
n
T(r) + S(r).

Noting that n ≥ 9, we get from Lemma 2.2 that F2(z) ≡ 1 or F3(z) ≡ 1.

If F3(z) ≡ 1, we have eh(z) ≡ 1. By (4.3), the conclusion holds.

If F2(z) ≡ 1, we have F(z) ≡ − eh(z)

eh(z) + 1
. Then by (44), we see that

nT(r, f ) = T(r, F) = T

(
r,− eh(z)

eh(z) + 1

)
= T(r, eh(z)) +O(1) ≤ 2T(r, f ) + S(r, f ),

which is a contradiction since n ≥ 9.
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