69 research outputs found

    Dietary potassium diformate (Formi) supplementation on juvenile white shrimp (Litopenaeus vannamei) diets for growth and survival support

    Get PDF
    Objective: This feeding trial was designed to assess the effects of formi (Dietary potassium diformate) supplementation in shrimp diet on growth and survival of  white shrimp, Litopenaeus vannamei.Methodology and results: Seven isonitrogenous diets were formulated with graded formi levels of 0, 1, 2, 4, 8, 14 and 20 mg kg-1 of dry diet, respectively. Shrimps were randomly allocated to twenty four (24) 50 l aquariums (10 shrimps of 0.82 ± 0.08 g per aquarium, eight treatments and three replicates). Water salinity was set at 17 g L-1 and the flow rate of each aquarium maintained at 2 L min-1 and decreased to 1 L min-1 at day 41th. Shrimps were exposed to 18:6 hours light/dark photoperiod. The results showed that water quality parameters did not vary significantly with the dietary supplementation and was optimal for growth and survival of L. vannamei. The maximum weight gain and survival occurred at 14 mg kg-1 formi diet. However, no significant differences were observed in percent weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR) between diets with different levels of formi supplementations. The survival rate data varied between 73.33 % and 100 %. Survival rate revealed that the commercial diet had the lowest survival. At the end of the study no significant effects on the growth, survival, feed efficiency and water quality of white shrimp, Litopenaeus vannamei was found.Keywords: Litopenaeus vannamei, Potassium diformate, growth performance, surviva

    miR-198 Inhibits HIV-1 Gene Expression and Replication in Monocytes and Its Mechanism of Action Appears To Involve Repression of Cyclin T1

    Get PDF
    Cyclin T1 is a regulatory subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is also required for Tat transactivation of HIV-1 LTR-directed gene expression. Translation of Cyclin T1 mRNA has been shown to be repressed in human monocytes, and this repression is relieved when cells differentiate to macrophages. We identified miR-198 as a microRNA (miRNA) that is strongly down-regulated when monocytes are induced to differentiate. Ectopic expression of miR-198 in tissue culture cells reduced Cyclin T1 protein expression, and plasmid reporter assays verified miR-198 target sequences in the 3′ untranslated region (3′UTR) of Cyclin T1 mRNA. Cyclin T1 protein levels increased when an inhibitor of miR-198 was transfected into primary monocytes, and overexpression of miR-198 in primary monocytes repressed the normal up-regulation of Cyclin T1 during differentiation. Expression of an HIV-1 proviral plasmid and HIV-1 replication were repressed in a monocytic cell line upon overexpression of miR-198. Our data indicate that miR-198 functions to restrict HIV-1 replication in monocytes, and its mechanism of action appears to involve repression of Cyclin T1 expression

    Gas-phase microsolvation of ubiquitin: investigation of crown ether complexation sites using ion mobility-mass spectrometry.

    Get PDF
    In this study the gas-phase structure of ubiquitin and its lysine-to-arginine mutants was investigated using ion mobility-mass spectrometry (IM-MS) and electron transfer dissociation-mass spectrometry (ETD-MS). Crown ether molecules were attached to positive charge sites of the proteins and the resulting non-covalent complexes were analysed. Collision induced dissociation (CID) experiments revealed relative energy differences between the wild type and the mutant crown-ether complexes. ETD-MS experiments were performed to identify the crown ether binding sites. Although not all of the binding sites could be revealed, the data confirm that the first crown ether is able to bind to the N-terminus. IM-MS experiments show a more compact structure for specific charge states of wild type ubiquitin when crown ethers are attached. However, data on ubiquitin mutants reveal that only specific lysine residues contribute to the effect of charge microsolvation. A compaction is only observed for one of the investigated mutants, in which the lysine has no proximate interaction partner. On the other hand when the lysine residues are involved in salt bridges, attachment of crown ethers has little effect on the structure

    Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2. The HIV-1 Tat transactivator protein enhances viral gene expression by exclusively recruiting the Cdk9-Cyclin T1 P-TEFb complex to a RNA element in nascent viral transcripts called TAR. The expression patterns of Cyclin T1 and Cyclin T2 in primary monocytes and CD4<sup>+ </sup>T cells suggests that Cyclin T2 may be generally involved in expression of constitutively expressed genes in quiescent cells, while Cyclin T1 may be involved in expression of genes up-regulated during macrophage differentiation, T cell activation, and conditions of increased metabolic activity To investigate this issue, we wished to identify the sets of genes whose levels are regulated by either Cyclin T2 or Cyclin T1.</p> <p>Findings</p> <p>We used shRNA lentiviral vectors to stably deplete either Cyclin T2 or Cyclin T1 in HeLa cells. Total RNA extracted from these cells was subjected to cDNA microarray analysis. We found that 292 genes were down- regulated by depletion of Cyclin T2 and 631 genes were down-regulated by depletion of Cyclin T1 compared to cells transduced with a control lentivirus. Expression of 100 genes was commonly reduced in either knockdown. Additionally, 111 and 287 genes were up-regulated when either Cyclin T2 or Cyclin T1 was depleted, respectively, with 45 genes in common.</p> <p>Conclusions</p> <p>These results suggest that there is limited redundancy in genes regulated by Cyclin T1 or Cyclin T2.</p

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors

    Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice

    Get PDF
    Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed

    Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj

    Get PDF
    Background: Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. Methods and Findings: Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. Conclusion: Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes

    A rough set-based association rule approach implemented on exploring beverages product spectrum

    Get PDF
    [[abstract]]When items are classified according to whether they have more or less of a characteristic, the scale used is referred to as an ordinal scale. The main characteristic of the ordinal scale is that the categories have a logical or ordered relationship to each other. Thus, the ordinal scale data processing is very common in marketing, satisfaction and attitudinal research. This study proposes a new data mining method, using a rough set-based association rule, to analyze ordinal scale data, which has the ability to handle uncertainty in the data classification/sorting process. The induction of rough-set rules is presented as method of dealing with data uncertainty, while creating predictive if—then rules that generalize data values, for the beverage market in Taiwan. Empirical evaluation reveals that the proposed Rough Set Associational Rule (RSAR), combined with rough set theory, is superior to existing methods of data classification and can more effectively address the problems associated with ordinal scale data, for exploration of a beverage product spectrum.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Host hindrance to HIV-1 replication in monocytes and macrophages

    Get PDF
    Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types

    HIV interactions with monocytes and dendritic cells: viral latency and reservoirs

    Get PDF
    HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis
    corecore