847 research outputs found

    Assisted extraction of the energy level spacings and lever arms in direct current bias measurements of one-dimensional quantum wires, using an image recognition routine

    Get PDF
    A multiplexer technique is used to individually measure an array of 256 split gates on a single GaAs/AlGaAs heterostructure. This results in the generation of large volumes of data, which requires the development of automated data analysis routines. An algorithm is developed to find the spacing between discrete energy levels, which form due to transverse confinement from the split gate. The lever arm, which relates split gate voltage to energy, is also found from the measured data. This reduces the time spent on the analysis. Comparison with estimates obtained visually show that the algorithm returns reliable results for subband spacing of split gates measured at 1:4 K. The routine is also used to assess DC bias spectroscopy measurements at lower temperatures (50 mK). This technique is versatile and can be extended to other types of measurements. For example, it is used to extract the magnetic field at which Zeeman-split 1D subbands cross one another.This work was supported by the Engineering and Physical Sciences Research Council grant No. EP/IO14268/1.This is the accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jap/117/1/10.1063/1.4905484

    Multiplexed charge-locking device for large arrays of quantum devices

    Get PDF
    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.This work was supported by the Engineering and Physical Sciences Research Council Grant No. EP/K004077/1.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493201

    Rationale and design of the Exercise Intensity Trial (EXCITE): A randomized trial comparing the effects of moderate versus moderate to high-intensity aerobic training in women with operable breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy.</p> <p>Methods/Design</p> <p>Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk<sup>-1 </sup>of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO<sub>2peak</sub>) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO<sub>2peak</sub>, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO<sub>2peak</sub>, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks).</p> <p>Discussion</p> <p>EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO<sub>2peak </sub>and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy.</p> <p>Trial Registration</p> <p>NCT01186367</p

    Statistical study of conductance properties in one-dimensional quantum wires focusing on the 0.7 anomaly

    Get PDF
    The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically-identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a single cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the `0.7 structure' (or `0.7 anomaly'). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from 0.630.63 to 0.84×(2e2/h)0.84\times (2e^2/h)], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.This is the author's accepted manuscript. The final version is published by ACS in Physical Review B and can be found here: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.045426

    Dependence of the 0.7 anomaly on the curvature of the potential barrier in quantum wires

    Get PDF
    . Ninety-eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a single chip and are individually addressed using a multiplexing technique. The anomalous conductance feature known as the "0.7 structure" is studied using statistical techniques. The ensemble of data shows that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature of the potential barrier in the transport direction decreases. This corresponds to an increase in the effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the conductance related to density. The curvature of the potential barrier appears to be the primary factor governing the shape of the 0.7 structure at a given T and B.his work was supported by Engineering and Physical Sciences Research Council Grant No. EP/I014268/1

    Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure

    Get PDF
    © 2016 American Physical Society. © 2016 American Physical Society.We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs/AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    The Perceptions on Male Circumcision as a Preventive Measure Against HIV Infection and Considerations in Scaling up of the Services: A Qualitative Study Among Police Officers in Dar es Salaam, Tanzania.

    Get PDF
    \ud In recent randomized controlled trials, male circumcision has been proven to complement the available biomedical interventions in decreasing HIV transmission from infected women to uninfected men. Consequently, Tanzania is striving to scale-up safe medical male circumcision to reduce HIV transmission. However, there is a need to investigate the perceptions of male circumcision in Tanzania using specific populations. The purpose of the present study was to assess the perceptions of male circumcision in a cohort of police officers that also served as a source of volunteers for a phase I/II HIV vaccine (HIVIS-03) trial in Dar es Salaam, Tanzania. In-depth interviews with 24 men and 10 women were conducted. Content analysis informed by the socio-ecological model was used to analyze the data. Informants perceived male circumcision as a health-promoting practice that may prevent HIV transmission and other sexually transmitted infections. They reported male circumcision promotes sexual pleasure, confidence and hygiene or sexual cleanliness. They added that it is a religious ritual and a cultural practice that enhances the recognition of manhood in the community. However, informants were concerned about the cost involved in male circumcision and cleanliness of instruments used in medical and traditional male circumcision. They also expressed confusion about the shame of undergoing circumcision at an advanced age and pain that could emanate after circumcision. The participants advocated for health policies that promote medical male circumcision at childhood, specifically along with the vaccination program. The perceived benefit of male circumcision as a preventive strategy to HIV and other sexually transmitted infections is important. However, there is a need to ensure that male circumcision is conducted under hygienic conditions. Integrating male circumcision service in the routine childhood vaccination program may increase its coverage at early childhood. The findings from this investigation provide contextual understanding that may assist in scaling-up male circumcision in Tanzania.\u

    A Dual Infection Pseudorabies Virus Conditional Reporter Approach to Identify Projections to Collateralized Neurons in Complex Neural Circuits

    Get PDF
    Replication and transneuronal transport of pseudorabies virus (PRV) are widely used to define the organization of neural circuits in rodent brain. Here we report a dual infection approach that highlights connections to neurons that collateralize within complex networks. The method combines Cre recombinase (Cre) expression from a PRV recombinant (PRV-267) and Cre-dependent reporter gene expression from a second infecting strain of PRV (PRV-263). PRV-267 expresses both Cre and a monomeric red fluorescent protein (mRFP) fused to viral capsid protein VP26 (VP26-mRFP) that accumulates in infected cell nuclei. PRV-263 carries a Brainbow cassette and expresses a red (dTomato) reporter that fills the cytoplasm. However, in the presence of Cre, the dTomato gene is recombined from the cassette, eliminating expression of the red reporter and liberating expression of either yellow (EYFP) or cyan (mCerulean) cytoplasmic reporters. We conducted proof-of-principle experiments using a well-characterized model in which separate injection of recombinant viruses into the left and right kidneys produces infection of neurons in the renal preautonomic network. Neurons dedicated to one kidney expressed the unique reporters characteristic of PRV-263 (cytoplasmic dTomato) or PRV-267 (nuclear VP26-mRFP). Dual infected neurons expressed VP26-mRFP and the cyan or yellow cytoplasmic reporters activated by Cre-mediated recombination of the Brainbow cassette. Differential expression of cyan or yellow reporters in neurons lacking VP26-mRFP provided a unique marker of neurons synaptically connected to dual infected neurons, a synaptic relationship that cannot be distinguished using other dual infection tracing approaches. These data demonstrate Cre-enabled conditional reporter expression in polysynaptic circuits that permits the identification of collateralized neurons and their presynaptic partners
    • …
    corecore