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Ninety eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs
heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a
single chip, and individually addressed using a multiplexing technique. The anomalous conductance
feature known as the “0.7 structure” is studied using statistical techniques. The ensemble of data
show that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature
of the potential barrier in the transport direction decreases. This corresponds to an increase in the
effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the
conductance related to density. The curvature of the potential barrier appears to be the primary
factor governing the shape of the 0.7 structure at a given T and B.

I. INTRODUCTION

Electrons confined in narrow one-dimensional (1D)
channels occupy discrete energy levels or subbands, caus-
ing the measured conductance to be quantized in units
of G0 = 2e2/h [1, 2]. Interactions between the electrons
give rise to an anomalous feature near 0.7G0, the “0.7
structure/anomaly” [3]. Consensus about the origin of
the 0.7 anomaly has not yet been reached [4, 5], and
it has been attributed to various causes. These include
spontaneous spin polarization [3, 6], the Kondo effect [7–
10], Wigner crystallisation [11, 12], and inelastic scat-
tering combined with a smeared van Hove singularity in
the density of states [13, 14]. The difficulty in distin-
guishing between different scenarios arises in part from
understanding how the 0.7 anomaly is governed by spe-
cific factors. Its behavior as a function of temperature T
and magnetic field B is well established: the 0.7 structure
becomes more pronounced as T increases (while higher
plateaus are smeared by thermal effects), and evolves into
a plateau at 0.5G0 with increasing B, as the 1D subbands
are split by the Zeeman energy.

The evolution of the 0.7 structure as a function of car-
rier density and 1D channel geometry is not well estab-
lished. As carrier density is reduced, the 0.7 structure has
been shown to evolve from 0.7G0 to 0.5G0 [15–17]. How-
ever, other studies report more complex behavior, with
the 0.7 structure rising and/or lowering in conductance
as carrier density increases [18–21]. In addition, the only
studies of the 0.7 structure as a function of device ge-
ometry have shown opposite trends [10, 19], or no clear
dependence [22]. The possible interplay between channel
length and carrier density further complicates the inter-
pretation of experimental results.

In this paper, we propose a solution to the apparent

conflict between reports on the density dependence of the
0.7 structure. Contrary to what is widely assumed in the
literature, we believe that it is the field profile, rather
than carrier density, that dictates the behavior of the 0.7
structure at constant temperature and in zero magnetic
field. More specifically, the primary variable appears to
be the longitudinal curvature of the one-dimensional bar-
rier. This hitherto unreported observation is made pos-
sible by the use of two recently-developed experimental
methods. The first, multiplexing [23], enables a statisti-
cal analysis on the characteristics of 98 split gates within
the same cooldown (the largest reported study in one-
dimensional transport). The second is a data analysis
tool that removes the trivial geometry dependence of the
conductance, leaving only the contribution of electron-
electron interactions. Our data are analyzed within a
framework given by the van Hove scenario [14] for the
0.7 structure, showing good qualitative agreement. Al-
though we cannot at this moment rule out any models
of the 0.7 structure/anomaly, we can however formulate
a quantitative predictive test which could discriminate
between such models.

Studies of transport in split gates have so far relied on
measuring individual devices, and reproducing the result
in a few others. An entirely different approach is pre-
sented here: large numbers of devices are measured in
a single cooldown and trends are observed in the com-
bined data. This is achieved using a multiplexing tech-
nique [23], which overcomes limitations on the number of
devices that can be located on a single chip and measured
in cryogenic apparatus. We study an ensemble of data
obtained from 98 lithographically-identical split gates, in
which differences in potential landscape arise from fluctu-
ations in the background potential. The statistical signif-
icance of our data analysis is a departure from methods
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previously used to study the 0.7 structure.
The paper is arranged as follows: First, details of ex-

perimental techniques are given in Sec. II. Next, Sec. III
describes variations in conductance properties between
devices, and presents the method of data analysis for
removing the geometric dependence of the conductance
trace for a non-interacting framework, such that differ-
ences due to electron interactions can be directly com-
pared. The dependence of the 0.7 structure on the barrier
curvature is then analyzed in Sec. IV. Section V com-
pares our results with the van Hove scenario for the 0.7
structure, and Sec. VI presents an alternative method of
analyzing our data (confirming trends observed in Sec.
III). This is followed by discussion and conclusions in
Secs. VII and VIII, respectively.

II. METHODS

An array of 256 split gates is fabricated on a
GaAs/AlGaAs modulation-doped heterostructure, in
which the two-dimensional electron gas (2DEG) forms
90 nm below the surface of the wafer. The carrier den-
sity and mobility are measured to be 1.7 × 1011 cm−2

and 0.94× 106 cm2V−1s−1, respectively. Each split gate
defines a 1D channel in the underlying 2DEG [24], and is
defined by electron-beam lithography to be 0.4 µm long
and 0.4 µm wide. The inset of Fig. 1(c) shows a schematic
of a split-gate device. Other surface gates are defined by
optical lithography, and all gates are metallized by ther-
mally evaporating Ti/Au. The differential conductance
is measured using two-terminal, constant voltage meth-
ods, with an ac excitation voltage of 100 µV at 77 Hz.
The measurements were performed at T = 1.4 K, in order
for the 0.7 structure to be well developed.

Each split gate is measured individually (details of this
technique are given in Refs. [23, 25]). Data showing
strong evidence of disorder for low G (less than 3G0) were
discarded, where disorder effects manifest in deviations
in the quantization of conductance (such as an absence of
conductance plateaus or suppression below the expected
value), or the existence of resonant features. Data from
98 split gates are retained and corrected for series re-
sistance using the measured resistance at Vsg = 0 as a
systematic method of analyzing the data.

III. VARIATIONS OF CONDUCTANCE
PROPERTIES

Despite the identical lithographic geometry, differences
exist in the 1D conductance properties (an initial study
of correlations between these properties is reported in
Ref. [26]). Figures 1(a) and 1(b) show histograms of the
pinch-off voltage of the 1D channel Vp and the voltage
at which the 1D channel is first defined Vd [27], respec-
tively. Data from all 98 split gates are presented. The
spread of these parameters arises from changes in the po-

FIG. 1: (a), (b) Histograms of pinch-off voltage Vp and
1D definition voltage Vd, respectively. Data are shown for
98 split gates. The bin sizes for panels (a) and (b) are 5
mV and 2 mV, respectively. (c) Conductance G as a func-
tion of split-gate voltage Vsg, for four example devices (solid
lines). The dashed lines show fits to the data using a modified
saddle-point model, with barrier curvature ~ωx,n as a fitting
parameter. For the data shown, ~ωx,1 decreases from left-
to-right (there is no specific relationship between ~ωx,1 and
pinch-off voltage Vp; these traces are chosen to show examples
of ~ωx,1 at different Vp for clarity). (d) Fitted conductance
Gf/G0 for 98 split gates, collapsed onto a universal curve.
The fitting for the first subband is shown. Data are offset to
align Gf/G0 = 0.5 with Vsg = 0 for each trace, and scaled
by α1e/~ωx,1. (e) Corresponding experimentally-measured
conductance Ge/G0, for a subset of ten devices. The data
are offset and scaled using the same parameters as Gf . For
Ge/G0 < 0.5, the traces collapse onto a similar curve. Above
0.5G0, variations arise because of differences in the shape of
the 0.7 structure. Changes in the 1D subband spacing cause
a further spread for Ge/G0 > 1. Small artefacts are present
in a few traces due to measurement glitches, and do not affect
the analysis. Six vertical dotted lines show κ from −0.6 to
0.9 in steps of 0.3.
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tential landscape predominantly due to the fluctuating
background potential from ionized dopants and impuri-
ties (it is likely that for the 98 split gates considered,
the impurities are not close to the 1D channel since the
transmission through the first three 1D subbands is not
affected).

Figure 1(c) shows conductance G as a function of split-
gate voltage Vsg for four devices (solid lines). Fits to the
data are shown by dashed curves. The fitted conduc-
tance is calculated using the Landauer-Büttiker formal-
ism for non-interacting electrons traversing a modified
saddle-point potential [29]. This has transmission prob-
ability Tn = [1 + exp(−2π(E − En)/~ωx,n)]−1, where
En is the energy of the subband bottom at the center
of the 1D channel, ~ωx,n is the curvature of the barrier
in the transport direction, and n is the subband index.
Subband-dependent values of ~ωx,n achieve a better over-
all fit, which reflects a modification of the barrier curva-
ture due to changes in electron density. We refer to the
experimentally-measured conductance as Ge, and fitted
conductance as Gf . The fitting procedure is described in
the appendix.

For split gates, the conductance below 0.5G0 is inde-
pendent of temperature up to intermediate T (typically
≈ 1.5 K for devices similar to those used here [3]). There-
fore, the fitting is performed with T = 0 for n = 1
(T = 1.4 K for n = 2 and 3, since here G is sensitive
to T ). We have repeated the analysis with T = 1.4 K
for n = 1, which shows the same trends. These data are
shown in the Supplemental Material [28]. To our knowl-
edge, the anomalous behavior of the first transition width
has not been studied in detail in experiment. However,
the van Hove scenario for the 0.7 structure gives detailed
predictions for its behavior (discussed in Sec. V). In order
to test predictions of the van Hove scenario regarding the
0.7 structure our data are analyzed within its framework.

Parameter ~ωx,1 governs the width in gate voltage of
the transition in G from zero to G0. Variations in tran-
sition widths for different devices are removed by scaling
the gate voltage by α1e/~ωx,1, where e is the electronic
charge, and α1 is an average lever arm obtained from
dc bias spectroscopy measurements (the method for ob-
taining α is described in the Appendix). Prior to scaling
the traces are offset horizontally to align Gf/G0 = 0.5
with Vsg = 0. Figure 1(d) shows the fitted conductance
curves Gf as a function of κ = α1eVsg/~ωx,1 for the first
subband, which collapses the data set of 98 traces onto a
single line (akin to Fig. S14 of [14]).

The same procedure is applied to the experimental
data Ge/G0, shown in Fig. 1(e). For clarity, only ten
traces are shown. Below Ge = 0.5G0, the data collapse
onto a similar curve. However, variations arise above
Ge = 0.5G0, due to differences in the shape of the 0.7
structure. Such variations do not occur in Gf [Fig. 1(d)],
in which electron interactions are not accounted for.

FIG. 2: Evolution of the 0.7 structure as a function of barrier
curvature and plateau width. (a) Ge/G0 for 98 split gates as
a function of ~ωx,1, for κ from −0.6 to 0.9 in steps of ∆κ = 0.3
[these κ values are shown by vertical dotted lines in Fig. 1(e)].
The difference of Ge/G0 from unity is plotted on a linear-log
scale in panel (b), for κ = 0 and above. The solid lines show
linear fits to the data, for which the relationship between
Ge and ~ωx,1 is exponential. (c) Conductance Ge/G0 as a
function of width of the first conductance plateau W1, where
W1 = ∆Vsg between G = 0.5 and 1.5G0. Data are shown for
five fixed values of κ (κ = 0.6 is omitted for clarity). Linear
fits to the data are plotted for each κ.

IV. ANALYSIS OF THE 0.7 STRUCTURE

The experimental conductance can now be directly
compared at fixed κ. Figure 2(a) shows Ge/G0 as a
function of ~ωx,1, at six values of κ. From bottom-to-
top, these correspond to κ = −0.6 to 0.9 (∆κ = 0.3),
illustrated by vertical dotted lines in Fig. 1(e), left-to-
right. For Ge/G0 below ≈ 0.6, Ge does not change with
~ωx,1.

For positive κ, Ge/G0 shows a strong non-linear re-
duction with decreasing ~ωx,1. This illustrates how the
0.7 anomaly occurs at lower conductance values as the
barrier becomes wider, and the effective device length
increases. To investigate the form of this dependence,
Fig. 2(b) shows a log-linear plot of 1−Ge/G0 as a function
of ~ωx,1 (for κ = 0 to 0.9). There is an approximately
linear trend (solid lines indicate a linear least-squares fit).
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The range of ~ωx,1 is small, so that it is difficult to un-
ambiguously identify the specific functional form of the
trend.

Figure 2(c) shows Ge/G0 as a function of the width
of the first conductance plateau W1. For κ ≤ 0, Ge/G0

does not change with W1. However, for positive κ the
vertical spread becomes much larger (κ = 0.6 is not plot-
ted for clarity), and there is a weak downward trend as
W1 increases. The solid lines in Fig. 2(c) show linear
least-squares fits to the data.

This relationship may reflect an additional conduc-
tance due to the population of the second 1D subband,
since we define W1 by ∆Vsg required for the second sub-
band to fill. The trend is less significant than that ob-
served in Fig. 2(a), in which the data are more tightly
distributed. Therefore, the trend in Fig. 2(a) cannot be
attributed to the presence of the second subband. The
decrease in Ge with larger W1 [Fig 2(c)] may also be
related to the interaction strength, since longer plateaus
suggest a stronger transverse confinement. The 0.7 struc-
ture is expected to occur at lower conductance values for
stronger interactions [14].

We do not observe any correlations between Ge/G0

and other properties of the conductance trace (including
the pinch-off voltage, and the voltage or conductance at
which the 1D channel is first defined). These data are
shown in Supplementa Material. The absence of correla-
tions with other properties of the conductance trace point
towards the curvature of the barrier being the primary
factor governing the value of the 0.7 structure at a given
T and B.

Previous studies of the dependence of the 0.7 structure
on 2DEG density [15, 16] have shown conflicting trends.
Data from nine studies are summarized in Ref. [21], show-
ing that the 0.7 structure is highly sensitive to the 1D
confining potential. It is likely that the specific potential
landscape varies between these devices, due to differences
in structure, material, and geometry. It is also likely that
the potential changes differently as a function of density
for each case, explaining the opposite trends reported.
Our study suggests a specific relationship between the
0.7 structure and the 1D confining potential, and is con-
sistent with data in Ref. [19], where the 0.7 structure was
studied in three devices of different length.

V. COMPARISON WITH THE INELASTIC
SCATTERING SCENARIO FOR THE 0.7

STRUCTURE

We now directly compare our data with the theoreti-
cal predictions from Bauer et al. [14], who have argued
that a smeared van Hove singularity in the density of
states just above the barrier top enhances interaction ef-
fects, and thereby causes the 0.7 anomaly [13]. This is
the only model for the origin of this structure for which
conductance g has been calculated as a function of Ωx
(we adopt their notation when referring to this model).

FIG. 3: (a) Predicted behavior of conductance g as a function

of effective barrier curvature Ω̃x, similar to Fig. S14(b) within
the supplementary material of Ref. [14]. Data for five differ-

ence values of Ω̃x/τ are shown, where τ is the hopping matrix
element in the tight-binding model used by Bauer et al. [14]
(for the case of a half-filled band studied there, τ = εF /2,

where εF is the Fermi energy). Values of Ω̃x are chosen to
collapse the curves onto a single trace for low g. The inset
shows the evolution of g as a function of Ω̃x at four different
fixed values of κ. From bottom-to-top, these correspond to
vertical dashed lines (left-to-right) in the main figure. The

data show a reduction in g as Ω̃x is decreased for constant κ.
For data in panel (a) B = 0 T. (b) Corresponding dependence

of g as a function of Ω̃x for a fixed magnetic field (B ' B∗

for Ω̃x = 0.02). Calculations are performed for the same five

values of the bare barrier curvature Ω̃x as in (a). The inset

shows the evolution of g as a function of Ω̃x for the same four
fixed values of κ. The reduction in g as Ω̃x is decreased is
enhanced compared to the B = 0 case.

Here, Ωx is the ‘bare’ barrier curvature, unmodified by
electron interactions.

A. Predicted dependence of the 0.7 structure on
barrier curvature

Figure 3(a) shows g as a function of κ = ∆Ṽc/Ω̃x,

where ∆Ṽc is the energy scale (offset such that traces

align at low g), and Ω̃x is an effective barrier curvature
which accounts for how the barrier shape is modified by
the presence of electrons [30]. Data for five different val-
ues of Ωx are calculated using the method for numerical
calculations used in the main text of Ref. [14]. They
present a more accurate version of Fig. S14(b) within
their supplementary information, with slightly different
choices for the parameters U and Ωx. In Fig. 3(a), ∆Ṽc
is divided by Ω̃x to collapse the traces onto a single curve
near pinch off.

When Ωx is decreased for given κ, g decreases. The
inset shows g as a function of Ω̃x for four values of κ
(bottom-to-top corresponds to dashed vertical lines left-
to-right in the main figure). The conductance g decreases
in a non-linear fashion with decreasing Ωx, qualitatively
consistent with our measured data in Fig. 2(a).

This trend arises because the effective strength of in-
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teractions in this model goes as 1/
√

Ωx, leading to a re-
duction in g for lower Ωx [14]. These calculations are
performed at T = 0, therefore the predicted trend is
weak. This is also why the model shows a only ‘skew-
ing’ of the conductance trace as Ωx reduces, rather than
the appearance of the plateau-like shoulder seen in exper-
imental data. For this reason, the largest ∆g occurs for
κ nearest to zero for the model, whereas in experimental
data the largest ∆Ge occurs at the right-most value of κ.

B. Finite magnetic field

Calculations at non-zero T are currently unavailable,
however, at finite T the effects of interactions are en-
hanced due to increased inelastic scattering, and the
model is expected to yield a greater reduction in g with
decreasing Ωx. The expected trend can be illustrated (at
T = 0) by considering the case of non-zero B, where in-
teraction effects are likewise more pronounced. We there-
fore consider the predicted behavior of the 0.7 anomaly
in the van Hove ridge scenario [14] when a constant mag-
netic field is applied. Calculations are performed for
five difference values of the ‘bare’ barrier curvature Ωx.
Figure 3(b) shows conductance g against κ = ∆Ṽc/Ω̃x,

where Ṽc is the barrier height with respect to the chemi-
cal potential (Ṽc is offset such that traces align at low g),

and Ω̃x is an effective barrier curvature which accounts
for how the barrier shape is modified by the presence of
electrons. The magnetic field B is fixed at a value close to
B∗ when Ω̃x = 0.02 (see Eq. 2 of Ref. [14] for a definition
of B∗).

For a given κ, g reduces when Ωx is decreased. This
is illustrated in the inset, which shows g as a function
of Ω̃x for four values of κ (bottom-to-top correspond to
dashed vertical lines left-to-right in the main figure). The
fact that the shape of the conductance curve is modified
towards lower g with decreasing Ωx illustrates that the
interaction-induced reduction of conductance becomes
more pronounced for lower Ωx. This is the same trend
as shown in Fig. 3(a), where B = 0. The trend is
much more pronounced in Fig. 3(b), since the interaction-
induced reduction of g is strongly enhanced for nonzero
B.

Within the van Hove ridge scenario, a similar effect is
expected for nonzero T at B = 0 (though no functional
renormalization group calculations are available for this
case). The reduction in g with decreasing Ωx is like-
wise expected to be much more pronounced at T 6= 0
compared to T = 0 [making the size of the trend in
Fig. 3(a) more comparable with experimental data from
Fig. 2(a)]. The reason for this similarity is that both
nonzeroB and nonzero T amplify the interaction-induced
reduction of g (albeit for somewhat different reasons: A
nonzero magnetic field reduces the conductance due to
an interaction-enhanced asymmetry between the effec-
tive barrier heights for spin up and spin down electrons,
whereas a nonzero temperature reduces the conductance

due to enhanced inelastic scattering).

C. Predictions of the behavior of the conductance
transition from zero to 0.5G0

Our results are used to test predictions of the inelas-
tic scattering plus van Hove model for the 0.7 structure.
This model gives detailed predictions of the behavior of
the transition from G = 0 to 0.5G0. Within this sce-
nario, the conductance below 0.5G0 is only weakly de-
pendent on interaction strength U in the regime where
B, T , and Vsd (and their effective crossover scales; B̃∗,

T̃∗, and Ṽsd∗, respectively), are small with respect to Ωx.
This is illustrated in Fig. 1(k) of Ref. [14], which shows
how g evolves with increasing U for B, T , and Vsd equal
to zero. Changing U has only a small effect on the traces
for g < 0.5, such that high U is close to non-interacting
scenario for g < 0.5.

Related to this, the model also predicts also predicts
a weak temperature dependence for g < 0.5, consistent
with experimental data. Figure 2(d) of Ref. [14] shows
the predicted behavior of the conductance for various
T̃ /T̃∗, where T̃∗ is an effective crossover scale. For g
below 0.5, the calculated conductance is almost indepen-
dent of T̃∗ for T̃ < T̃∗ (for these data T̃∗/Ωx = 0.2).

Therefore, for the inelastic scattering plus van Hove
scenario the curve shape for g < 0.5 and T̃ < T̃∗ is gov-
erned essentially by Ωx, such that it is reasonable to use
a non-interacting model to analyze our data within the
framework of this model, as long as kT is significantly
smaller than ~ωx,1. Our analysis estimates that ~ωx,1
varies from 1.3 to 3 meV for the first subband, thus the
maximum ratio of kT/~ωx,1 is < 0.1.

VI. ALTERNATIVE ANALYSIS OF THE 0.7
STRUCTURE

Here we present an alternative method of analyzing the
0.7 anomaly, in terms of its area. The 0.7 structure be-
comes more pronounced as ~ωx,1 reduces, verifying the
trend in Fig. 2(a). Figure 4(a) shows the conductance
G as a function of Vsg for an example split gate (solid
line). The dashed line shows the fitted conductance us-
ing the Landauer-Büttiker formalism. The difference be-
tween the fitted and experimental conductance quantifies
how pronounced the 0.7 anomaly appears.

We define the ‘strength’ of the 0.7 anomaly as Afit −
Ameas, where Ameas (Afit) is the area beneath the first
plateau in measured (fitted) data, respectively. The left
and right limits of both areas are given by pinch-off volt-
age Vp and Vsg at G = 1.1G0 from the experimental data,
respectively. This is illustrated in Fig. 4(a), in which
Ameas (Afit) is shown by the hatched (solid) pattern.

Figure 4(b) shows a scatter plot of the strength of
the 0.7 anomaly against ~ωx,1. There is a strong neg-
ative trend: Low ~ωx,1 is associated with a stronger 0.7
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FIG. 4: (a) Conductance Gmeas as a function of Vsg for an
example split gate (solid line). The area beneath the first
plateau is highlighted by the hatched area Ameas, defined by
limits Vp and Vsg at Gmeas = 1.1G0. The dotted line shows
a fit to the data, using a modified saddle-point model. The
corresponding area under this curve is shown by the solid
pattern (Afit). (b) Scatter plot of the ‘strength’ of the 0.7
anomaly against barrier curvature ~ωx,1, where the strength
is estimated using A = Ameas −Afit.

anomaly. This is consistent with the trend in Fig. 2(a),
where G is reduced as ~ωx,1 decreases, since as the 0.7
structure becomes more pronounced (for instance with
increasing T ), the conductance value of the onset of the
0.7 anomaly reduces [3]. This shows that the trend in
Fig. 2(a) is not a result of the scaling of the voltage axis,
since no scaling is performed for Fig. 4(b).

VII. DISCUSSION

The results presented here do not identify a specific
origin of the 0.7 structure, however, they clearly show
conditions for which it is strongest. Reproducing the
behavior reported here provides a further test of the var-
ious theories regarding the 0.7 structure (e.g. Refs. [6–
14, 35, 36]), in addition to the dependence on magnetic
field, temperature and dc bias.

A reduction in G for lower ~ωx is also predicted
by the spontaneous spin polarization [31] and Kondo
scenarios [32]. In the latter case, the relationship
between G and ωx could be expected to be a power
law [33]. However, tests can be devised which may be
able to distinguish between the different theories. For
example, the Ge/G0 dependence on ~ωx,1 should be
investigated as a function of T , B, and dc source-drain
bias Vsd, which all affect the conductance of the 0.7
structure. These measurements can be used to extract
the low energy scales B̃∗, T̃∗, and Ṽsd∗ identified in
Ref. [14]. Verifying the predicted dependence of B̃∗ on
Ωx given in Eq. 35(a) and Fig. S13 of Ref. [14] would
be strong evidence that this is the correct model for the
0.7 anomaly.

An initial study of correlations between conductance
properties of split gates is presented in Ref. [26], using
the same data as the current paper. In Ref. [26], we
investigated the relationship between pinch-off voltage,

the voltage and conductance of the definition point, the
width of the first plateau, and barrier curvatures ~ωx,n,
of subbands n = 1, 2 and 3. The 0.7 anomaly was also
studied. A conductance value (G0.7) associated with the
0.7 anomaly was estimated for 36 devices, where G0.7 was
defined by a local minimum in dG/dVsg. No correlations
where observed between G0.7 and other properties of the
1D conductance.

The analysis of the 0.7 anomaly in the current study
is superior for two reasons. First, this method allows
us to investigate the 0.7 anomaly in many more devices.
The 0.7 structure is present in all 98 split gates mea-
sured but gives rise to a minimum in dG/dVsg for only
approximately one third of the data (36 devices); G0.7

could be estimated only when the 0.7 structure is very
pronounced. Second, in Ref. [26] a single conductance
value associated with the 0.7 anomaly is found for each
device. The approach used in the current study allows
the conductances over the entire transition region from
zero to G0 to be compared. This provides much more in-
formation since the full shape of the suppression of con-
ductance below G0, which forms the 0.7 anomaly, can be
studied.

VIII. CONCLUSION

In summary, we have used a multiplexing technique
to systematically study the effect of device geometry on
the 0.7 anomaly. Statistical methods were used to ana-
lyze a data set from 98 split gates, individually measured
during a single cooldown. Trends are identified in the
ensemble of data, rather than in the behavior of a single
device. Using an approach to data analysis informed by
a recently proposed model for the 0.7 structure, it ap-
pears that the 0.7 structure becomes more pronounced
and occurs at a lower conductance value for smaller bar-
rier curvature ~ωx. This corresponds to an increase in
the effective length of the device, for which the strength
of electron interactions increases. Our data suggest that
the barrier shape–rather than density–is the primary fac-
tor governing the conductance of the 0.7 structure.
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APPENDIX

The fitting routine used to estimate Gf is described
below. A description can also be found in Ref. [26].

The Landauer-Büttiker formalism is used to calcu-
late the conductance as a function of energy E for each
subband individually. We use a modified saddle-point
potential [29] with transmission probability Tn = [1 +
exp(−2π(E − En)/~ωx,n)]−1, where En is the energy of
the subband bottom at the centre of the 1D channel, and
n is the subband index.

The conductance for each subband is calculated inde-
pendently using

Gn = G0

∫
Tn

(
− ∂f
∂E

)
dE , (1)

where f is the Fermi-Dirac distribution f = (1 +
e(E−µ)/kBT )−1, and µ is the chemical potential. In our
reference frame each subband edge is initially at µ = 0,
such that En = 0. The integration is performed between
±50kBT .

After calculating Gn the energy scale is divided by
lever arm αn (∆E = αe∆Vsg, where e is the electronic
charge), to convert to a voltage scale. An average value
of αn is used, discussed below. After scaling, Gn for each
subband is offset such that Gn = 0.5G0 aligns with the
midpoints of equivalent risers between plateaus in mea-
sured conductance (Ge). Parameters ~ωx,n are then op-
timized to fit Gn to Ge. For n = 1, the fit is performed
between 0 and 0.5G0 (to avoid the 0.7 structure). For

n = 2 (3), the fitting is performed between 1.01G0 and
2G0 (2.01G0 and 3G0).

As discussed in the main article, the conductance be-
low 0.5G0 is independent of temperature up to interme-
diate T . The fitting is therefore performed with T = 0
for n = 1 (T = 1.4 K for n = 2 and 3, where G is sen-
sitive to T ). The sum of Gn for n = 1, 2, and 3 gives
the final fitted conductance, as shown in Fig. 1(c) [the
fitted condutance Gf in Fig. 1(d) is shown for the first
subband (n = 1), since the focus of this article is the 0.7
structure].

DC bias spectroscopy measurements are used to esti-
mate the lever arm α = ∂Vsd/∂Vsg [37], and the spac-
ing between the 1D subbands ∆En,n+1. We measured
24 devices, and for the first subband obtain an aver-
age α1 = 63 × 10−3 and ∆E1,2 = 2.8 meV, with stan-
dard deviations of α1 = 8.6 × 10−3 and 0.3 meV, re-
spectively [38]. Because of the time required to perform
detailed dc measurements, we measured G for dc-bias
voltages from Vdc = 0 to −2.5 mV, with coarse ∆Vdc
intervals of −0.5 mV. The 1D subband spacing ∆E1,2

is estimated by extrapolating lines linking peaks in the
transconductance dG/dVsg, following the method used
in Ref. [39] (see Figs. 2 and 3 of that article). In or-
der to correct the Vdc scale for series resistance we use
Vdccorr = Vdc×R1D/(R1D +Rs), where R1D is the resis-
tance across the split gate, and Rs is the series resistance.
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IX. SUPPLEMENTAL MATERIAL

Additional material is provided here, supplementary
to the main article. In Sec. A we consider the depen-
dence of the 0.7 anomaly on electrical properties of 1D
conductance trace, namely the pinch-off voltage (Vp), the
voltage at which the 1D channel is defined (Vd), and the
conductance at which the 1D channel is defined (Gd). In
the main article, the fitted conductance for the first sub-
band is calculated using T = 0 K: In Sec. B, we show
that repeating the analysis using T = 1.4 K (the T at
which measurements are carried out) yields very similar
results. Figures presented in this supplementary mate-
rial (within the main article) are referred to using an “S”
(“A”) to precede the figure number; e.g. Fig. S1(a) [Fig.
A1(a)].

A. Conductance of the 0.7 anomaly as a function
of electrical properties of the 1D system

Figure S5(a) shows the experimentally measured con-
ductance Ge/G0 for 98 split gates, where Vsg is scaled by

FIG. 5: (a) Full set of experimental conductance data Ge/G0

from 98 split gates, as a function of κ = α1eVsg/~ωx,1. Traces
are offset horizontally to alignGe/G0 = 0.5 with Vsg = 0. The
six vertical dashed lines show κ = −0.6 to 0.9, in steps of 0.3.
(b)–(d) Conductance Ge/G0 as a function of pinch off volt-
age Vp, 1D definition voltage Vd, and definition conductance
Gd, respectively. In each panel, data are shown for five fixed
values of κ. From bottom-to-top, these correspond to vertical
dashed lines (left-to-right) in panel (a) (κ = 0.6 is omitted for
clarity).

α1e/~ωx,1 as described in the main article (traces are off-
set horizontally to align Ge/G0 = 0.5 with Vsg = 0). All
traces collapse onto a similar curve below Ge/G0 = 0.5,
while variations exist for 0.5 < Ge/G0 < 1, due to the
0.7 anomaly. The six vertical dashed lines show κ = −0.6
to 0.9, in steps of 0.3.

We compare Ge/G0 at fixed κ against various prop-
erties of the 1D conductance trace. Figure S5(b) shows
Ge/G0 as a function of pinch-off voltage Vp, at five values
of κ (Vp refers to when Ge has dropped to zero). From
bottom-to-top, these correspond to vertical dashed lines
(left-to-right) in Fig. S5(a) (κ = 0.6 data are omitted
for clarity). Figures S5(c) and S5(d) show correspond-
ing data as a function of the voltage (Vd) and conduc-
tance (Gd) at which a 1D channel is first defined, respec-
tively. There are no correlations between Ge/G0 and any
of these properties.

In summary, the only clear correlation we have
observed is between Ge/G0 and ~ωx,1 [Fig. A2(a)].
This indicates that the barrier curvature is the most
significant parameter in governing the behaviour of the
0.7 structure.

B. Performing the fitting with T = 1.4 K for the
first 1D subband

For data presented in the main article, the fitted con-
ductance for the first subband is calculated using T = 0
K in the fitting formula. This is because experimental
data show that the transition in G from zero to 0.5G0

is temperature independent up to intermediate tempera-
tures. Devices similar to those measured here show very
little change up to T = 1.5 K (see Fig. 4 of Ref. [1] for
example). In the discussion below, we show that repeat-
ing our analysis using T = 1.4 K (the T at which the
measurements were performed), gives similar results.

Figure S6(a) shows ~ωx,1 for T = 0 K against ~ωx,1 for
T = 1.4 K. The dashed line shows the one-to-one corre-
spondence of axes. The values of ~ωx,1 are very similar;
for T = 0 K, ~ωx,1 is systematically slightly higher by
about 0.2 meV (an increase is expected because there is
no temperature broadening of the conductance trace).

Figures S6(b)–(f) reproduce Figs. A1(d), A1(e), and
the whole of Fig. A2 from the main article. However,
for the data show here, T = 1.4 K is used in the fitting
formula (for n = 1) instead of T = 0 K. Both sets of data
are similar and show the same trends.

Figure S6(b) shows Gf as a function of κ for T =
1.4 K. The data collapse onto a curve similar to Fig.
A1(d) from the main article. However, there are small
variations which result in a spread near zero and G0.
The corresponding experimental data Ge for a subset of
10 devices are shown in Fig. S6(c).

Panels (d), (e) and (f) of Fig. S6 show the dependence
of Ge/G0 on ~ωx,1 and W1, when T = 1.4 K is used
for the fitting function. The data are very similar for
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FIG. 6: (a) Comparison of ~ωx,1 values obtained using T = 0 (vertical axis) or T = 1.4 K (horizontal axis) in the fitting
formula used to estimate ~ωx,1. For T = 0 K, the estimate is systematically higher due to the absence of thermal broadening.
The dashed line indicates the one-to-one correspondence between x and y axes, as a guide-to-eye. (b) Fitted conductance
Gf/G0 at as a function of scaled gate voltage κ, for 98 split gates (data are first offset to align Gf/G0 = 0.5 with Vsg = 0).
These data are calculated using T = 1.4 K, and there is a small spread in the collapsed traces not present for the T = 0 K case.
(c) Corresponding experimentally-measured conductance Ge/G0 (for clarity, only ten traces are shown). The data are offset
and scaled using the same parameters as Gf . Six vertical dashed lines show κ from −0.6 to 0.9 in steps of 0.3. (d) Ge/G0 as
a function of ~ωx,1, at fixed values of κ. From bottom-to-top, these correspond to vertical dashed lines (left-to-right) in panel
(c). A small downward trend exists for data below 0.5G0, which arises from the small spread in the collapsed conductance
traces. (e) Linear-log plot of 1 − Ge/G0 as a function of ~ωx,1, for κ = 0 and above. The solid lines show linear fits to the
data. (f) Conductance Ge/G0 as a function of width of the first conductance plateau W1, where W1 = ∆Vsg between G = 0.5
and 1.5G0. Data are shown for five fixed values of κ (κ = 0.6 is omitted for clarity). Linear fits are plotted for each κ.

in both cases (T = 0 and 1.4 K). The only difference is
that below 0.5G0, the data in Fig. S6(d) shows a slight
upward trend (with an overall change of ∆Ge/G0 = 0.07
for κ = −0.3), as ~ωx,1 decreases from 3 to 1 meV. This
trend–not present in Fig. A2(a)–reflects the spread in
Ge visible in Fig. S6(c) below 0.5G0. There will be a
corresponding small downward trend in Fig. S6(d) above
0.5G0.

This illustrates a benefit of using T = 0: The fitted
conductance traces collapse onto an single curve [Fig.
A2(a)], such that variations in transition widths as G
rises from zero to G0 are completely removed. Since
~ωx,1 governs the width in gate voltage of this transition,
the geometry dependence is effectively removed, and data
from each split gate can be directly compared.
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