35 research outputs found
Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants
Deep learning with wearable based heart rate variability for prediction of mental and general health
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData Availability:
The data collected in this study resides in a secure network and access to data for further analysis would require further ethics approval due to the data containing sensitive participant information, but may be available upon request.The ubiquity and commoditisation of wearable biosensors (fitness bands) has led to a deluge of personal healthcare data, but with limited analytics typically fed back to the user. The feasibility of feeding back more complex, seemingly unrelated measures to users was investigated, by assessing whether increased levels of stress, anxiety and depression (factors known to affect cardiac function) and general health measures could be accurately predicted using heart rate variability (HRV) data from wrist wearables alone. Levels of stress, anxiety, depression and general health were evaluated from subjective questionnaires completed on a weekly or twice-weekly basis by 652 participants. These scores were then converted into binary levels (either above or below a set threshold) for each health measure and used as tags to train Deep Neural Networks (LSTMs) to classify each health measure using HRV data alone. Three data input types were investigated: time domain, frequency domain and typical HRV measures. For mental health measures, classification accuracies of up to 83% and 73% were achieved, with five and two minute HRV data streams respectively, showing improved predictive capability and potential future wearable use for tracking stress and well-being.Engineering and Physical Sciences Research Council (EPSRC
Using fNIRS to study working memory of infants in rural Africa
A pilot study was conducted to assess the feasibility of using fNIRS as an alternative to behavioral assessments of cognitive development with infants in rural Africa. We report preliminary results of a study looking at working memory in 12â16-month-olds and discuss the benefits and shortcomings for the potential future use of fNIRS to investigate the effects of nutritional insults and interventions in global health studies
Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptorâpositive breast cancers
Introduction
Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents.
Methods
Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptorâpositive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed.
Results
By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acidâ and leucine-rich protein 1, an ER coactivator.
Conclusions
These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Recommended from our members
Does Gender Influence Colour Choice in the Treatment of Visual Stress?
Purpose
Visual Stress (VS) is a condition in which words appear blurred, in motion, or otherwise distorted when reading. Some people diagnosed with VS find that viewing black text on white paper through coloured overlays or precision tinted lenses (PTLs) reduces symptoms attributed to VS. The aim of the present study is to determine whether the choice of colour of overlays or PTLs is influenced by a patientâs gender.
Methods
Records of all patients attending a VS assessment in two optometry practices between 2009 and 2014 were reviewed retrospectively. Patients who reported a significant and consistent reduction in symptoms with either overlay and or PTL were included in the analysis. Overlays and PTLs were categorized as stereotypical male, female or neutral colours based on gender preferences as described in the literature. Chi-square analysis was carried out to determine whether gender (across all ages or within age groups) was associated with overlay or PTL colour choice.
Results
279 patients (133 males and 146 females, mean age 17 years) consistently showed a reduction in symptoms with an overlay and were included. Chi-square analysis revealed no significant association between the colour of overlay chosen and male or female gender (Chi-square 0.788, p = 0.674). 244 patients (120 males and 124 females, mean age 24.5 years) consistently showed a reduction in symptoms with PTLs and were included. Chi-square analysis revealed a significant association between stereotypical male/female/neutral colours of PTLs chosen and male/female gender (Chi-square 6.46, p = 0.040). More males preferred stereotypical male colour PTLs including blue and green while more females preferred stereotypical female colour PTLs including pink and purple.
Conclusions
For some VS patients, the choice of PTL colour is influenced not only by the alleviation of symptoms but also by other non-visual factors such as gender
Novel ViroidâLike RNAs Naturally Infect a Filamentous Fungus
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroidâlike RNAs naturally infect nonâplant hosts remains unknown. Here the existence of a set of exogenous, singleâstranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rollingâcircle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.Peer reviewe
The inferomedial femoral neck is compromised by age but not disease: Fracture toughness and the multifactorial mechanisms comprising reference point microindentation
The influence of ageing on the fracture mechanics of cortical bone tissue is well documented, though little is known about if and how related material properties are further affected in two of the most prominent musculoskeletal diseases, osteoporosis and osteoarthritis (OA). The femoral neck, in close proximity to the most pertinent osteoporotic fracture site and near the hip joint affected by osteoarthritis, is a site of particular interest for investigation. We have recently shown that Reference Point micro-Indentation (RPI) detects differences between cortical bone from the femoral neck of healthy, osteoporotic fractured and osteoarthritic hip replacement patients. RPI is a new technique with potential for in vivo bone quality assessment. However, interpretation of RPI results is limited because the specific changes in bone properties with pathology are not well understood and, further, because it is not conclusive what properties are being assessed by RPI. Here, we investigate whether the differences previously detected between healthy and diseased cortical bone from the femoral neck might reflect changes in fracture toughness. Together with this, we investigate, which additional properties are reflected in RPI measures. RPI (using the Biodent device) and fracture toughness tests were conducted on samples from the inferomedial neck of bone resected from donors with: OA (41 samples from 15 donors), osteoporosis (48 samples from 14 donors) and non age-matched cadaveric controls (37 samples from 10 donoros) with no history of bone disease. Further, a subset of indented samples were imaged using micro-computed tomography (3 osteoporotic and 4 control samples each from different donors) as well as fluorescence microscopy in combination with serial sectioning after basic fuchsin staining (7 osteoporotic and 5 control samples from 5 osteoporotic and 5 control donors). In this study, the bulk indentation and fracture resistance properties of the inferomedial femoral neck in osteoporotic fracture, severe OA and control bone were comparable (p > 0.05 for fracture properties and <10% difference for indentation) but fracture toughness reduced with advancing age (7.0% per decade, r = -0.36, p = 0.029). Further, RPI properties (in particular, the indentation distance increase, IDI) showed partial correlation with fracture toughness (r = -0.40, p = 0.023) or derived elastic modulus (r = -0.40, p = 0.023). Multimodal indent imaging revealed evidence of toughening mechanisms (i.e. crack deflection, bridging and microcracking), elastoplastic response (in terms of the non-conical imprint shape and presence of pile-up) and correlation of RPI with damage extent (up to r = 0.79, p = 0.034) and indent size (up to r = 0.82, p < 0.001). Therefore, crack resistance, deformation resistance and, additionally, micro-structure (porosity: r = 0.93, p = 0.002 as well as pore proximity: r = -0.55, p = 0.027 for correlation with IDI) are all contributory to RPI. Consequently, it becomes clear that RPI measures represent a multitude of properties, various aspects of bone quality, but are not necessarily strongly correlated to a single mechanical property. In addition, osteoporosis or osteoarthritis do not seem to further influence fracture toughness of the inferomedial femoral neck beyond natural ageing. Since bone is highly heterogeneous, whether this finding can be extended to the whole femoral neck or whether it also holds true for other femoral neck quadrants or other material properties remains to be shown.</p
The inferomedial femoral neck is compromised by age but not disease: Fracture toughness and the multifactorial mechanisms comprising reference point microindentation
The influence of ageing on the fracture mechanics of cortical bone tissue is well documented, though little is known about if and how related material properties are further affected in two of the most prominent musculoskeletal diseases, osteoporosis and osteoarthritis (OA). The femoral neck, in close proximity to the most pertinent osteoporotic fracture site and near the hip joint affected by osteoarthritis, is a site of particular interest for investigation. We have recently shown that Reference Point micro-Indentation (RPI) detects differences between cortical bone from the femoral neck of healthy, osteoporotic fractured and osteoarthritic hip replacement patients. RPI is a new technique with potential for in vivo bone quality assessment. However, interpretation of RPI results is limited because the specific changes in bone properties with pathology are not well understood and, further, because it is not conclusive what properties are being assessed by RPI. Here, we investigate whether the differences previously detected between healthy and diseased cortical bone from the femoral neck might reflect changes in fracture toughness. Together with this, we investigate, which additional properties are reflected in RPI measures. RPI (using the Biodent device) and fracture toughness tests were conducted on samples from the inferomedial neck of bone resected from donors with: OA (41 samples from 15 donors), osteoporosis (48 samples from 14 donors) and non age-matched cadaveric controls (37 samples from 10 donoros) with no history of bone disease. Further, a subset of indented samples were imaged using micro-computed tomography (3 osteoporotic and 4 control samples each from different donors) as well as fluorescence microscopy in combination with serial sectioning after basic fuchsin staining (7 osteoporotic and 5 control samples from 5 osteoporotic and 5 control donors). In this study, the bulk indentation and fracture resistance properties of the inferomedial femoral neck in osteoporotic fracture, severe OA and control bone were comparable (p > 0.05 for fracture properties and <10% difference for indentation) but fracture toughness reduced with advancing age (7.0% per decade, r = -0.36, p = 0.029). Further, RPI properties (in particular, the indentation distance increase, IDI) showed partial correlation with fracture toughness (r = -0.40, p = 0.023) or derived elastic modulus (r = -0.40, p = 0.023). Multimodal indent imaging revealed evidence of toughening mechanisms (i.e. crack deflection, bridging and microcracking), elastoplastic response (in terms of the non-conical imprint shape and presence of pile-up) and correlation of RPI with damage extent (up to r = 0.79, p = 0.034) and indent size (up to r = 0.82, p < 0.001). Therefore, crack resistance, deformation resistance and, additionally, micro-structure (porosity: r = 0.93, p = 0.002 as well as pore proximity: r = -0.55, p = 0.027 for correlation with IDI) are all contributory to RPI. Consequently, it becomes clear that RPI measures represent a multitude of properties, various aspects of bone quality, but are not necessarily strongly correlated to a single mechanical property. In addition, osteoporosis or osteoarthritis do not seem to further influence fracture toughness of the inferomedial femoral neck beyond natural ageing. Since bone is highly heterogeneous, whether this finding can be extended to the whole femoral neck or whether it also holds true for other femoral neck quadrants or other material properties remains to be shown.</p