12,322 research outputs found
INTEGRAL observation of 3EG J1736-2908
The possible identification by INTEGRAL of the EGRET source 3EG J1736-2908
with the active galactic nucleus GRS 1734-292 is discussed. The latter was
discovered in 1990 and later identified with a Seyfert 1 galaxy. At the time of
the compilation of the 3rd EGRET Catalog, it was not considered as a possible
counterpart of the source 3EG J1736-2908, which remained unidentified. A
detailed multiwavelength study of the EGRET error circle is presented, by
including archival radio, soft- and hard-X observations, suggesting that GRS
1734-292 could be a likely counterpart of 3EG J1736-2908, even though this
poses very interesting questions about the production mechanisms of gamma-rays
with energies greater than 100 MeV.Comment: 6 pages, 3 figures. Accepted for publication on A&A Main Journa
Atmospheric extinction coefficients in the band for several major international observatories: Results from the BiSON telescopes, 1984 to 2016
Over 30 years of solar data have been acquired by the Birmingham Solar
Oscillations Network (BiSON), an international network of telescopes used to
study oscillations of the Sun. Five of the six BiSON telescopes are located at
major observatories. The observational sites are, in order of increasing
longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas
Observatory (LCO), Chile; Observatorio del Teide, Iza\~{n}a, Tenerife, Canary
Islands; the South African Astronomical Observatory (SAAO), Sutherland, South
Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri,
New South Wales, Australia. The BiSON data may be used to measure atmospheric
extinction coefficients in the band (approximately 700-900 nm),
and presented here are the derived atmospheric extinction coefficients from
each site over the years 1984 to 2016.Comment: 15 pages, 10 figures, 4 tables. Accepted by Astronomical Journal:
2017 July 2
Scattering of second sound waves by quantum vorticity
A new method of detection and measurement of quantum vorticity by scattering
second sound off quantized vortices in superfluid Helium is suggested.
Theoretical calculations of the relative amplitude of the scattered second
sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are
presented. The relevant estimates show that an experimental verification of the
method is feasible. Moreover, it can even be used for the detection of a single
quantum vortex.Comment: Latex file, 9 page
Universal scaling of the elliptic flow data at RHIC
Recent PHOBOS measurements of the excitation function for the pseudo-rapidity
dependence of elliptic flow in Au+Au collisions at RHIC, have posed a
significant theoretical challenge. Here we show that these differential
measurements, as well as the RHIC measurements on transverse momentum satisfy a
universal scaling relation predicted by the Buda-Lund model, based on exact
solutions of perfect fluid hydrodynamics. We also show that recently found
transverse kinetic energy scaling of the elliptic flow is a special case of
this universal scaling.Comment: 4 pages, 3 figures, 1 tabl
Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest
Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer
A Bichromatic Incidence Bound and an Application
We prove a new, tight upper bound on the number of incidences between points
and hyperplanes in Euclidean d-space. Given n points, of which k are colored
red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between
the k red points and m hyperplanes spanned by all n points provided that m =
\Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal
and Aronov.
We use this incidence bound to prove that a set of n points, no more than n-k
of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also
provide an infinite family of counterexamples to a conjecture of Purdy's on the
number of hyperplanes spanned by a set of points in dimensions higher than 3,
and present new conjectures not subject to the counterexample.Comment: 12 page
Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65
Results on the obliquity of exoplanet host stars -- the angle between the
stellar spin axis and the planetary orbital axis -- provide important
diagnostic information for theories describing planetary formation. Here we
present the first application of asteroseismology to the problem of stellar
obliquity determination in systems with transiting planets and Sun-like host
stars. We consider two systems observed by the NASA Kepler Mission which have
multiple transiting small (super-Earth sized) planets: the previously reported
Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper.
Both stars show rich spectra of solar-like oscillations. From the asteroseismic
analysis we find that each host has its rotation axis nearly perpendicular to
the line of sight with the sines of the angles constrained at the 1-sigma level
to lie above 0.97 and 0.91, respectively. We use statistical arguments to show
that coplanar orbits are favoured in both systems, and that the orientations of
the planetary orbits and the stellar rotation axis are correlated.Comment: Accepted for publication in ApJ; 46 pages, 11 figure
Understanding visual map formation through vortex dynamics of spin Hamiltonian models
The pattern formation in orientation and ocular dominance columns is one of
the most investigated problems in the brain. From a known cortical structure,
we build spin-like Hamiltonian models with long-range interactions of the
Mexican hat type. These Hamiltonian models allow a coherent interpretation of
the diverse phenomena in the visual map formation with the help of relaxation
dynamics of spin systems. In particular, we explain various phenomena of
self-organization in orientation and ocular dominance map formation including
the pinwheel annihilation and its dependency on the columnar wave vector and
boundary conditions.Comment: 4 pages, 15 figure
Elastic forces that do no work and the dynamics of fast cracks
Elastic singularities such as crack tips, when in motion through a medium
that is itself vibrating, are subject to forces orthogonal to the direction of
motion and thus impossible to determine by energy considerations alone. This
fact is used to propose a universal scenario, in which three dimensionality is
essential, for the dynamic instability of fast cracks in thin brittle
materials.Comment: 8 pages Latex, 1 Postscript figur
Signatures of magnetic activity in the seismic data of solar-type stars observed by Kepler
In the Sun, the frequencies of the acoustic modes are observed to vary in
phase with the magnetic activity level. These frequency variations are expected
to be common in solar-type stars and contain information about the
activity-related changes that take place in their interiors. The unprecedented
duration of Kepler photometric time-series provides a unique opportunity to
detect and characterize stellar magnetic cycles through asteroseismology. In
this work, we analyze a sample of 87 solar-type stars, measuring their temporal
frequency shifts over segments of length 90 days. For each segment, the
individual frequencies are obtained through a Bayesian peak-bagging tool. The
mean frequency shifts are then computed and compared with: 1) those obtained
from a cross-correlation method; 2) the variation in the mode heights; 3) a
photometric activity proxy; and 4) the characteristic timescale of the
granulation. For each star and 90-d sub-series, we provide mean frequency
shifts, mode heights, and characteristic timescales of the granulation.
Interestingly, more than 60% of the stars show evidence for (quasi-)periodic
variations in the frequency shifts. In the majority of the cases, these
variations are accompanied by variations in other activity proxies. About 20%
of the stars show mode frequencies and heights varying approximately in phase,
in opposition to what is observed for the Sun.Comment: Accepted for publication in ApJS, 19(+86) pages, 11(+89) figures,
2(+87) table
- …
