11,471 research outputs found

    The use of Planetary Nebulae precursors in the study of Diffuse Interstellar Bands

    Get PDF
    We present the first results of a systematic search for Diffuse Interstellar Bands in a carefully selected sample of post-AGB stars observed with high resolution optical spectroscopy. These stars are shown to be ideal targets to study this old, intriguing astrophysical problem. Our results suggest that the carrier(s) of these bands may not be present in the circumstellar environments of these evolved stars. The implications of the results obtained on the identification of the still unknown carrier(s) are discussed.Comment: 4 pages, 2 figures, proceedings of the conference 'Planetary Nebulae as Astrophysical Tools', held in Gdansk, Poland (June 28 - July 2, 2005

    Topological Vertex, String Amplitudes and Spectral Functions of Hyperbolic Geometry

    Get PDF
    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)SL(2,{\mathbb Z})) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of an hyperbolic three-geometry associated with qq-series in the computation of the string amplitudes.Comment: Revised version. References added, results remain unchanged. arXiv admin note: text overlap with arXiv:hep-th/0701156, arXiv:1105.4571, arXiv:1206.0664 by other author

    Magneto-seismology of solar atmospheric loops by means of longitudinal oscillations

    Full text link
    There is increasingly strong observational evidence that slow magnetoacoustic modes arise in the solar atmosphere. Solar magneto-seismology is a novel tool to derive otherwise directly un-measurable properties of the solar atmosphere when magnetohydrodynamic (MHD) wave theory is compared to wave observations. Here, MHD wave theory is further developed illustrating how information about the magnetic and density structure along coronal loops can be determined by measuring the frequencies of the slow MHD oscillations. The application to observations of slow magnetoacoustic waves in coronal loops is discused.Comment: 4 pages, 2 figures, to appear in Proceedings of IAU Symp 286, Comparative Magnetic Minima, C. H. Mandrini, ed

    High-Energy Proton-Proton Forward Scattering and Derivative Analyticity Relations

    Get PDF
    We present the results of several parametrizations to two different ensemble of data on pppp total cross sections σtotpp\sigma_{tot}^{pp} at the highest center-of-mass energies (including cosmic-ray information). The results are statistically consistent with two distinct scenarios at high energies. From one ensemble the prediction for the LHC (s=14\sqrt s = 14 TeV) is σtotpp=113±5\sigma_{tot}^{pp} = 113 \pm 5 mb and from the other, σtotpp=140±7\sigma_{tot}^{pp}=140 \pm 7 mb. From each parametrization, and making use of derivative analyticity relations (DAR), we determine ρ(s)\rho(s) (ratio between the forward real and imaginary parts of the elastic scattering amplitude). A discussion on the optimization of the DAR in terms of a free parameter is also presented.In all cases good descriptions of the experimental data are obtained.Comment: One formula added, one unit changed, small misprints corrected, final version to be published in Brazilian Journal of Physics; 13 pages, 8 figures, aps-revte

    High-resolution X-ray Spectra Of The Symbiotic Star SS73 17

    Full text link
    SS73 17 was an innocuous Mira-type symbiotic star until Integral and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2 keV bandpass. We present here followup observations with the Chandra HETG and Suzaku that confirm the earlier detection of strong emission lines of Fe Kalpha fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high resolution spectrum also shows emission lines of other highly ionized ions as Si XIV and possibly S XVI. In addition, a reanalysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe XXV lines shows that these lines are thermal, not photoionized, in origin. With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.Comment: 7 pages, 5 figures. Accepted by the Astrophysical Journa

    Transverse oscillations of a multi-stranded loop

    Full text link
    We investigate the transverse oscillations of a line-tied multi-stranded coronal loop composed of several parallel cylindrical strands. First, the collective fast normal modes of the loop are found with the T-matrix theory. There is a huge quantity of normal modes with very different frequencies and a complex structure of the associated magnetic pressure perturbation and velocity field. The modes can be classified as bottom, middle, and top according to their frequencies and spatial structure. Second, the temporal evolution of the velocity and magnetic pressure perturbation after an initial disturbance are analyzed. We find complex motions of the strands. The frequency analysis reveals that these motions are a combination of low and high frequency modes. The complexity of the strand motions produces a strong modulation of the whole tube movement. We conclude that the presumed internal fine structure of a loop influences its transverse oscillations and so its transverse dynamics cannot be properly described by those of an equivalent monolithic loop.Comment: Accepted in Ap

    Transverse oscillations of two coronal loops

    Full text link
    We study transverse fast magnetohydrodynamic waves in a system of two coronal loops modeled as smoothed, dense plasma cylinders in a uniform magnetic field. The collective oscillatory properties of the system due to the interaction between the individual loops are investigated from two points of view. Firstly, the frequency and spatial structure of the normal modes are studied. The system supports four trapped normal modes in which the loops move rigidly in the transverse direction. The direction of the motions is either parallel or perpendicular to the plane containing the axes of the loops. Two of these modes correspond to oscillations of the loops in phase, while in the other two they move in antiphase. Thus, these solutions are the generalization of the kink mode of a single cylinder to the double cylinder case. Secondly, we analyze the time-dependent problem of the excitation of the pair of tubes. We find that depending on the shape and location of the initial disturbance, different normal modes can be excited. The frequencies of normal modes are accurately recovered from the numerical simulations. In some cases, because of the simultaneous excitation of several eigenmodes, the system shows beating and the phase lag between the loops is π/2\pi/2.Comment: Accepted for publication in The Astrophysical Journa

    A conjecture on the infrared structure of the vacuum Schrodinger wave functional of QCD

    Get PDF
    The Schrodinger wave functional for the d=3+1 SU(N) vacuum is a partition function constructed in d=4; the exponent 2S in the square of the wave functional plays the role of a d=3 Euclidean action. We start from a gauge-invariant conjecture for the infrared-dominant part of S, based on dynamical generation of a gluon mass M in d=4. We argue that the exact leading term, of O(M), in an expansion of S in inverse powers of M is a d=3 gauge-invariant mass term (gauged non-linear sigma model); the next leading term, of O(1/M), is a conventional Yang-Mills action. The d=3 action that is the sum of these two terms has center vortices as classical solutions. The d=3 gluon mass, which we constrain to be the same as M, and d=3 coupling are related through the conjecture to the d=4 coupling strength, but at the same time the dimensionless ratio in d=3 of mass to coupling squared can be estimated from d=3 dynamics. This allows us to estimate the QCD coupling αs(M2)\alpha_s(M^2) in terms of this strictly d=3 ratio; we find a value of about 0.4, in good agreement with an earlier theoretical value but a little low compared to QCD phenomenology. The wave functional for d=2+1 QCD has an exponent that is a d=2 infrared-effective action having both the gauge-invariant mass term and the field strength squared term, and so differs from the conventional QCD action in two dimensions, which has no mass term. This conventional d=2 QCD would lead in d=3 to confinement of all color-group representations. But with the mass term (again leading to center vortices), N-ality = 0 mod N representations are not confined.Comment: 15 pages, no figures, revtex
    corecore