654 research outputs found

    Topological susceptibility of SU(N) gauge theories at finite temperature

    Get PDF
    We investigate the large-N behavior of the topological susceptibility in four-dimensional SU(N) gauge theories at finite temperature, and in particular across the finite-temperature transition at Tc. For this purpose, we consider the lattice formulation of the SU(N) gauge theories and perform Monte Carlo simulations for N=4,6. The results indicate that the topological susceptibility has a nonvanishing large-N limit for T<Tc, as at T=0, and that the topological properties remain substantially unchanged in the low-temperature phase. On the other hand, above the deconfinement phase transition, the topological susceptibility shows a large suppression. The comparison between the data for N=4 and N=6 hints at a vanishing large-N limit for T>Tc.Comment: 9 pages, 2 figs, a few discussions added, JHEP in pres

    Glueball masses in the large N limit

    Full text link
    The lowest-lying glueball masses are computed in SU(NN) gauge theory on a spacetime lattice for constant value of the lattice spacing aa and for NN ranging from 3 to 8. The lattice spacing is fixed using the deconfinement temperature at temporal extension of the lattice NT=6N_T = 6. The calculation is conducted employing in each channel a variational ansatz performed on a large basis of operators that includes also torelon and (for the lightest states) scattering trial functions. This basis is constructed using an automatic algorithm that allows us to build operators of any size and shape in any irreducible representation of the cubic group. A good signal is extracted for the ground state and the first excitation in several symmetry channels. It is shown that all the observed states are well described by their large NN values, with modest O(1/N2){\cal O}(1/N^2) corrections. In addition spurious states are identified that couple to torelon and scattering operators. As a byproduct of our calculation, the critical couplings for the deconfinement phase transition for N=5 and N=7 and temporal extension of the lattice NT=6N_T=6 are determined.Comment: 1+36 pages, 22 tables, 21 figures. Typos corrected, conclusions unchanged, matches the published versio

    Colour confinement and dual superconductivity of the vacuum - I

    Get PDF
    We study dual superconductivity of the ground state of SU(2) gauge theory, in connection with confinement. We do that measuring on the lattice a disorder parameter describing condensation of monopoles. Confinement appears as a transition to dual superconductor, independent of the abelian projection defining monopoles. Some speculations are made on the existence of a more appropriate disorder parameter. A similar study for SU(3) is presented in a companion paper.Comment: Some typos corrected, acknowledgements added; to appear on Phys. Rev.

    Free energy and theta dependence of SU(N) gauge theories

    Get PDF
    We study the dependence of the free energy on the CP violating angle theta, in four-dimensional SU(N) gauge theories with N >= 3, and in the large-N limit. Using the Wilson lattice formulation for numerical simulations, we compute the first few terms of the expansion of the ground-state energy F(theta) around theta = 0, F(theta) - F(0) = A_2 theta^2 (1 + b_2 theta^2 + ...). Our results support Witten's conjecture: F(theta) - F(0) = A theta^2 + O(1/N) for theta < pi. We verify that the topological susceptibility has a nonzero large-N limit chi_infinity = 2A with corrections of O(1/N^2), in substantial agreement with the Witten-Veneziano formula which relates chi_infinity to the eta' mass. Furthermore, higher order terms in theta are suppressed; in particular, the O(theta^4) term b_2 (related to the eta' - eta' elastic scattering amplitude) turns out to be quite small: b_2 = -0.023(7) for N=3, and its absolute value decreases with increasing N, consistently with the expectation b_2 = O(1/N^2).Comment: 3 pages, talk presented at the conference Lattice2002(topology). v2: One reference has been updated, no further change

    Conformal vs confining scenario in SU(2) with adjoint fermions

    Get PDF
    The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling ÎČ=4/g02=2.25\beta = 4/g_0^2 = 2.25 for values of the bare fermion mass m0m_0 that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the mass of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near--)conformal and the confining scenario is outlined.Comment: 5 pages, 4 figures using RevTeX4, Typos corrected, references added. Versions to appear on PR

    Casimir scaling of domain wall tensions in the deconfined phase of D=3+1 SU(N) gauge theories

    Full text link
    We perform lattice calculations of the spatial 't Hooft k-string tensions in the deconfined phase of SU(N) gauge theories for N=2,3,4,6. These equal (up to a factor of T) the surface tensions of the domain walls between the corresponding (Euclidean) deconfined phases. For T much larger than Tc our results match on to the known perturbative result, which exhibits Casimir Scaling, being proportional to k(N-k). At lower T the coupling becomes stronger and, not surprisingly, our calculations show large deviations from the perturbative T-dependence. Despite this we find that the behaviour proportional to k(N-k) persists very accurately down to temperatures very close to Tc. Thus the Casimir Scaling of the 't Hooft tension appears to be a `universal' feature that is more general than its appearance in the low order high-T perturbative calculation. We observe the `wetting' of these k-walls at T around Tc and the (almost inevitable) `perfect wetting' of the k=N/2 domain wall. Our calculations show that as T tends to Tc the magnitude of the spatial `t Hooft string tension decreases rapidly. This suggests the existence of a (would-be) 't Hooft string condensation transition at some temperature which is close to but below Tc. We speculate on the `dual' relationship between this and the (would-be) confining string condensation at the Hagedorn temperature that is close to but above Tc.Comment: 40 pages, 14 figure

    Glueballs and k-strings in SU(N) gauge theories : calculations with improved operators

    Full text link
    We test a variety of blocking and smearing algorithms for constructing glueball and string wave-functionals, and find some with much improved overlaps onto the lightest states. We use these algorithms to obtain improved results on the tensions of k-strings in SU(4), SU(6), and SU(8) gauge theories. We emphasise the major systematic errors that still need to be controlled in calculations of heavier k-strings, and perform calculations in SU(4) on an anisotropic lattice in a bid to minimise one of these. All these results point to the k-string tensions lying part-way between the `MQCD' and `Casimir Scaling' conjectures, with the power in 1/N of the leading correction lying in [1,2]. We also obtain some evidence for the presence of quasi-stable strings in calculations that do not use sources, and observe some near-degeneracies between (excited) strings in different representations. We also calculate the lightest glueball masses for N=2, ...,8, and extrapolate to N=infinity, obtaining results compatible with earlier work. We show that the N=infinity factorisation of the Euclidean correlators that are used in such mass calculations does not make the masses any less calculable at large N.Comment: 49 pages, 15 figure

    Topological susceptibility in the SU(3) gauge theory

    Get PDF
    We compute the topological susceptibility for the SU(3) Yang--Mills theory by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi=(191 +/- 5 MeV)^4 if F_K is used to set the scale. Our result supports the Witten--Veneziano explanation for the large mass of the eta'.Comment: Final version to appear on Phys. Rev. Let

    A three-dimensional scalar field theory model of center vortices and its relation to k-string tensions

    Full text link
    In d=3 SU(N) gauge theory, we study a scalar field theory model of center vortices that furnishes an approach to the determination of so-called k-string tensions. This model is constructed from string-like quantum solitons introduced previously, and exploits the well-known relation between string partition functions and scalar field theories in d=3. Center vortices corresponding to magnetic flux J (in units of 2\pi /N) are composites of J elementary J=1 constituent vortices that come in N-1 types, with repulsion between like constituents and attraction between unlike constituents. The scalar field theory involves N scalar fields \phi_i (one of which is eliminated) that can merge, dissociate, and recombine while conserving flux mod N. The properties of these fields are deduced directly from the corresponding gauge-theory quantum solitons. Every vacuum Feynman graph of the theory corresponds to a real-space configuration of center vortices. We study qualitatively the problem of k-string tensions at large N, whose solution is far from obvious in center-vortex language. We construct a simplified dynamical picture of constituent-vortex merging, dissociation, and recombination, which allows in principle for the determination of vortex areal densities and k-string tensions. This picture involves point-like "molecules" (cross-sections of center vortices) made of constituent "atoms" that combine and disassociate dynamically in a d=2 test plane . The vortices evolve in a Euclidean "time" which is the location of the test plane along an axis perpendicular to the plane. A simple approximation to the molecular dynamics is compatible with k-string tensions that are linear in k for k<< N, as naively expected.Comment: 21 pages; RevTeX4; 4 .eps figure
    • 

    corecore