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Conformal vs confining scenario in SU(2) with adjoint fermions

L. Del Debbioa, B. Lucinib, A. Patellab, C. Picaa and A. Ragob

a SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK and
b School of Physical Sciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK

The masses of the lowest–lying states in the meson and in the gluonic sector of an SU(2) gauge
theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed
value of the lattice coupling β = 4/g2

0 = 2.25 for values of the bare fermion mass m0 that span a
range between the quenched regime and the massless limit, and for various lattice volumes. Even
for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons.
Moreover, the string tension between two static fundamental sources strongly depends on the mass
of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before
the chiral limit is reached. The implications of these findings for the phase of the theory in the
massless limit are discussed and a strategy for discriminating between the (near–)conformal and the
confining scenario is outlined.

PACS numbers: 11.15.Ha, 12.60.Nz, 12.39.Mk, 12.39.Pn

The existence of a strongly–interacting sector beyond
the Standard Model that is responsible for the break-
ing of electroweak symmetry was proposed many years
ago [1, 2]. This scenario is referred to as Technicolor.
The constituent fields of this sector describe techniquarks
and technigluons. The dynamically–generated mass scale
– i.e. the equivalent of the typical hadronic mass scale
in QCD – separates the low–energy regime of the the-
ory, of which the Standard Model is an effective theory,
from the regime in which the technicolor sector becomes
manifest; this scale is of the order of the TeV. How-
ever, a simple rescaling of QCD to the TeV scale and
successive extensions to account for non–zero masses of
Standard Model fermions prove to be inadequate to de-
scribe the phenomenology of the Standard Model itself
(see e.g. [3, 4] for a review). Walking Technicolor pro-
vides a suggestive framework to cure some of these prob-
lems [5, 6, 7]. In this scenario, the technicolor theory be-
haves like QCD both in the ultraviolet and in the infrared
regimes; asymptotic freedom characterizes the behavior
at high–energies, while in the infrared domain the the-
ory is confining, and chiral symmetry is broken. However,
there is an intermediate range of energies in which the de-
pendence of the coupling on the energy scale is supposed
to be very mild. This is the walking regime, which should
characterize theories that are close to the conformal
window. Although this framework solves phenomeno-
logical problems of the original Technicolor model, its
most straightforward realization, as an SU(N) gauge the-
ory with fundamental fermions, requires a large number
of flavors to be compatible with electroweak precision
data [8]: the phenomenologically favored theories with a
low number of flavors Nf and a low number of colors N
have necessarily fermions in higher representations. An-
other interesting scenario, known as Conformal Techni-
color [9], assumes the existence of an underlying theory
with a strongly–interacting IR fixed point. Recent an-
alytical investigations using a wide range of techniques
have tried to characterize such (near–)conformal theo-
ries [10, 11, 12, 13, 14].

An interesting possibility for reconciling the Walking
Technicolor scenario with the experimental data is to
consider gauge theories coupled with fermions transform-
ing in higher representations of the gauge group [15], in
which the conformal phase (and as a consequence the
near–conformal phase) can be reached at values of Nf

and N that are not excluded by phenomenology [16].
In particular, the theory with N = Nf = 2, and Dirac
fermions in the adjoint representation is a likely candi-
date for the realization of the (near–)conformal scenario.
Evidence for such (near–)conformal behavior is based on
analytical calculations performed relying on uncontrolled
approximations, or educated guesses. Hence, it is manda-
tory to investigate the phase structure of those theories
from first principles. This has prompted several lattice
calculations of bound state masses [17, 18, 19, 20, 21], of
the Dirac operator spectrum [22, 23, 24] and of the renor-
malization group flow [25, 26, 27] of candidate walking
theories. These calculations have to be interpreted with
great care, since lattice systematic errors can obscure
the physical behavior. Nonetheless the picture emerging
from these studies is that the physics of gauge theories
with fermions in the adjoint or in the symmetric repre-
sentation has a different signature than QCD. Whether
this is an indication of possible (near–)conformal behav-
ior or a manifestation of the limitations of the current
calculations is a question that can be answered only by
gaining better control on the chiral, the infinite volume,
and the continuum limit extrapolations. Interesting dis-
cussions of possible lattice signatures have been presented
in Refs. [28, 29].

Most of the spectrum–based studies have looked for
signatures of conformal or walking behavior in various
observables; mesons have been studied in Refs. [17, 18,
19, 20, 21], baryons in Ref. [20] and Creutz ratios in
Ref. [19]. In a gauge theory with massless fermions and
chiral symmetry breaking, the vector meson has a mass of
the order of the dynamical scale of the theory Λ and the
pseudoscalar meson is massless, since it is the Goldstone
boson associated to the spontaneous breaking of chiral
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symmetry. If the fermions have a small mass m ≪ Λ, the
masses of the pseudoscalar and vector states are given by

mPS = aPS

√
m , mV = aVm + bV , (1)

where bV is the mass of the vector meson in the chiral
limit. The other states in the spectrum are expected to
behave like the vector state. In the case of a confor-
mal theory, at m = 0 bound states cannot form. When
a small mass is added, the theory is driven away from
conformality. Masses of bound states then scale as

mPS = αPSm
ρ , mV = αVmρ , (2)

where ρ is related to the anomalous dimension of the
mass γ by

ρ = 1/(1 + γ) . (3)

Since in ordinary Monte Carlo calculations it is impos-
sible to simulate directly the massless case, indications
of (near–)conformality can be sought using Eqs. (1-2).
In particular, one would measure the ratio mV/mPS and
check whether it behaves like in QCD (i.e. whether it
goes to infinity as m−1/2, or it stays constant at least for
a wide interval of masses before diverging). The problem
with this approach is that a constant ratio mV/mPS ≃ 1
is also a characteristic of the large fermion mass limit
of SU(N) gauge theories, and for a theory that is not
QCD (i.e. for which we can not rely on guidance com-
ing from experiments) it is not clear a priori which bare
mass would be small enough for the onset of the chiral
behavior to be visible. Hence, there is a risk to con-
fuse a confining, chiral symmetry breaking theory with
heavy fermions, and a (near–)conformal theory in the in-
frared. The central point of this work is to show that this
ambiguity can be successfully resolved by comparing the
spectrum of the lightest mesons with gluonic observables.

In this note, we report on a numerical investigation of
SU(2) gauge theory with two flavors of Dirac fermions
in the adjoint representation for a fixed value of the lat-
tice coupling β. With this calculation, we aim to make
a relevant step towards the understanding of the chiral
limit while keeping under control finite size effects, but
we will not be addressing the issue of the extrapolation
towards the continuum, our calculation being at fixed
lattice spacing. This point is crucial to understand the
scope of the conclusions that can be drawn from our cal-
culations, since all our results can potentially be affected
by lattice artifacts, which could distort the numerical re-
sults. On the other hand, it is also worth stressing that
the results presented here explore a range of masses much
lighter than the ones in previous studies of this theory.
At the same time care is taken at taming finite volume
effects at such small masses.

In order to keep our presentation contained and acces-
sible to a more general audience, we defer the discussion
of the lattice observables and the presentation of our re-
sults in full to future publications. Here, we limit our ex-
position to the essential aspects, referring for the moment

the interested reader to the quoted literature for gen-
eral discussions of the techniques. Simulations are per-
formed on a spacetime lattice with geometry (2L) × L3,
where L = 8, 12, 16. The long direction plays the role of
Euclidean time, while the others are spatial directions.
Fermions have antiperiodic boundary conditions in the
temporal direction, and periodic boundary conditions in
the spatial directions. We use the Wilson action for the
gauge field and the Wilson discretization for the Dirac
operator (the details of the implementation are given in
Ref. [18]). The bare parameters are the bare coupling g0

and the bare mass in lattice units am0. The coupling g0

controls the size of the lattice spacing a. Our calculation
is performed at β = 4/g2

0 = 2.25, which has been found
to be in the region of the phase diagram connected with
the continuum limit [19, 20].

We measure masses of non–singlet mesons, the quark
mass from the axial Ward identity (PCAC mass), the
masses of the 0++ and of the 2++ glueballs and the string
tension from the large distance exponential decay of cor-
relators of operators with the appropriate quantum num-
bers. More details on the meson observables discussed
in this work can be found in Ref. [18], which also con-
tains a description of the simulation techniques we use
to generate the configurations, while for measurements
of quantities in the gluonic sector we follow Ref. [30],
from which we also borrow results for gluonic observ-
ables in the SU(2) Yang–Mills theory. The data shown
are those obtained on the largest available lattice after
checking that results on the smaller lattices were com-
patible. Whenever this request was not fulfilled we have
discarded the data for the corresponding observable. As
a consequence, gluonic observables that are more sensi-
tive to finite–size effects could not be computed at the
lighter masses.

A - Hierarchy in the spectrum. A global overview
of our numerical results is presented in Fig. 1. The plot
shows that a small, but clearly non–vanishing string ten-
sion exists at least down to PCAC masses of the order of
0.1 in units of the inverse lattice spacing, and that such
string tension decreases with decreasing PCAC mass.
The string tension shown in the figure is extracted using
correlators of Polyakov loops, but compatible numbers
are obtained from the static potential. For a lattice of
fixed size L, the string tension decreases when decreasing
the PCAC mass until it becomes O(1/L2) at which value
a plateaux is reached. Tests on lattices of different sizes
show that this is a finite size effect. As the lattice size
is increased, the string tension keeps decreasing as the
fermion mass is decreased. A non–zero string tension is
expected in the massive case even in the conformal win-
dow, since a non–zero quark mass moves the theory away
from the attraction basin of the IR fixed point. What is
remarkable is that even at our lowest PCAC masses there
is a well–defined hierarchy in the spectrum: the string
tension defines the lowest mass scale in the system, and
the meson spectrum is well above the lowest–lying glue-
balls. At this stage, it is worth noticing that states with
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FIG. 1: Comparative plot of the various observables as a
function of mPCAC. The lines at high PCAC mass show the
quenched behavior of the various observables. The horizontal
line at aM = 1 visually shows the separation between val-
ues of masses that are affected by lattice artifacts (aM > 1)
and values for which the states are below the ultraviolet cut-
off (aM < 1). Although ideally one wants all the states of
interest to be free from lattice artifacts, due to the big sepa-
ration of the scales, this condition is difficult to accommodate
in practice.

mass of the order or above a−1 are expected to be sig-
nificantly affected by discretization artifacts; while we
can reach small masses for the mesons, the extraction of
the gluonic spectrum becomes very expensive for light
fermions. As a consequence we do not have results for
the glueballs and the string tension at the smaller values
of the mass. Despite the fact that a significant portion of
our spectrum falls in the region were discretization arti-
facts are not under control, the hierarchy of the spectrum
seems to be a robust conclusion, as it can be extrapolated
smoothly to the region where discretization errors are ex-
pected to be under control. To investigate in more detail
the observed hierarchy of scales, we plot in Fig. 2 the ratio
mPS/

√
σ as a function of the pseudoscalar mass in lat-

tice units. For a standard confining and chiral symmetry
breaking theory, this ratio goes to zero in the chiral limit.
For our theory, even when varying the pseudoscalar mass
by a factor of six to a region where it is well below the
cutoff scale, this ratio is always of order 10, and does not
extrapolate to zero in the chiral limit. This behavior is
at odds with the one expected for QCD, and indeed it is
not observed in QCD simulations for similar variations of
the pseudoscalar mass. Fermion loops seem to strongly
affect the gluonic sector, keeping the corresponding scale
always well below the scale of mesonic physics. Let us
discuss now the main features emerging from the numer-
ical calculations.

B - IR effective dynamics. The vector meson is not
displayed in Fig. 1, since it is degenerate with the pseu-
doscalar meson on the scale of the plot (the approximate
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FIG. 2: Pseudoscalar mass in units of
√

σ as a function of the
pseudoscalar mass in units of a−1. Points on the left of the
vertical line at aM = 1 are expected to be reasonably free
from finite lattice spacing effects.

degeneracy of the pseudoscalar and vector mesons was
already observed in previous simulations, starting from
Ref. [17]). Having a better control on the massless limit
allows us to investigate more closely the degeneracy be-
tween the pseudoscalar and the vector meson observed
in previous studies. Our data in Fig. 3 show that, as
the fermion mass is reduced, the ratio mV/mPS progres-
sively rises from 1 (which is the expected result in the
heavy quark effective theory) to 1.04, where it seems to
stabilize. Understanding whether this 4% variation is
significant will require a more systematic study. To shed
more light on this ratio, we performed a comparison with
data obtained in quenched SU(2) simulations. The bare
coupling and the fermion mass of the quenched theory
need to be fine–tuned in such a way that the string ten-
sion and the pseudoscalar mass of the dynamical simula-
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FIG. 3: The ratio of the vector mass mV over the pseudoscalar
mass mPS as a function of the pseudoscalar mass. Quenched
data at equivalent bare lattice parameters are also shown.
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FIG. 4: Comparison of the lightest pseudoscalar and glueball
masses in the quenched and in the dynamical theory as a
function of the pseudoscalar mass.

tions are matched. The comparison in Fig. 3 shows that
the splitting between the pseudoscalar and vector meson
masses is due purely to gluonic effects. To see how much
the spectrum resembles the pure Yang–Mills one, we have
compared in Fig. 4 the glueball masses obtained from our
simulations to the ones of pure gauge SU(2) after match-
ing the string tensions. Data for the Yang-Mills theory
are obtained by interpolating (or slightly extrapolating)
the data in Ref. [30]. Once the string tension and the
pseudoscalar mass are tuned, all the states that we stud-
ied are reproduced by the quenched data. Note that the
value of the bare lattice coupling β needs to be adjusted
as a function of the fermion mass used in the dynami-
cal simulations. A possible explanation of this behavior
is that the mesons decouple in the infrared, and the ef-
fective long–distance theory is SU(2) Yang-Mills with a
hadronic scale smaller than the fermion mass of the full
theory.

Another explanation for the features observed in the
mesonic spectrum could be that the fermions are simply
too massive and as a consequence the theory is quenched;
however, this conclusion is unlikely to accommodate the
observed hierarchy between mesonic and gluonic states in
the spectrum, which seems to reflect the importance of
fermion loops in the UV. In fact, the simultaneous pres-
ence of these two phenomena could be seen as a signature
of a conformal point in the massless limit. Such a sce-
nario has been proposed by Miransky [31], who has shown
that in SU(N) gauge theories with fundamental fermions
in the conformal phase but close to the higher end of
the conformal window (where the infrared fixed point
is perturbative) the low–energy effective spectrum coin-
cides with the spectrum of the SU(N) Yang–Mills theory
with a dynamically generated mass scale that is propor-
tional to the pseudoscalar meson mass. The proportion-
ality constant is exponentially small in the inverse of the
squared gauge coupling at the IR fixed point. While the
details of the calculation can not be trusted at the lower

end of the conformal window (in which our theory would
be if an infrared fixed point existed), it is conceivable
that features like the hierarchy in the spectrum and the
suppressed infrared scale will survive also when a per-
turbative analysis of the physics near the infrared fixed
point is not reliable.

In conclusion, our numerical data are the first system-
atic study of the chiral regime for the SU(2) gauge theory
with two Dirac adjoint fermions. They support a scenario
in which the spectrum is determined by a pure gauge dy-
namics, whose dynamically–generated scale slides with
the fermion mass and is always well below the scale
of the meson physics (the separation being about one
order of magnitude). Moreover all the states in the
mesonic spectrum become lighter as the fermion mass is
decreased; the separation of the pseudoscalar Goldstone
bosons from the rest of the spectrum, which would char-
acterize the spontaneous breaking of chiral symmetry, is
not observed. These peculiar features of the spectrum
provide a stronger evidence in favor of the conformality
of the theory in the massless limit.

Indeed if the behavior observed over the limited range
of quark masses in the scaling region of our present sim-
ulations does extrapolate to the continuum and chiral
limit without any significant qualitative difference, the
conclusion that this theory lies in the conformal window
will be natural.

At the moment, however our conclusions are limited by
a number of factors: gluonic observables are very expen-
sive to measure accurately at small quark masses so at
present we only have two points with glueball masses be-
low the cutoff scale. Moreover finite volume effects have
to be under control even for the mesonic spectrum to be
extrapolated with confidence to the small mass regime.
This makes it very difficult to get closer to the chiral
limit, and explicitly check that we are not in a heavy
quark regime. Finally, we lack control on the continuum
limit, since all of our numerical simulations were per-
formed at a single lattice spacing. Scaling towards the
continuum limit is beyond the scope of the present paper
and it will be addressed by forthcoming simulations.

In view of these limitations a QCD-like scenario still
remains possible, as well as the intermediate Walking sce-
nario. At present however, taking into account the avail-
able information presented in this paper as well as in pre-
vious publications, the alternative which is more likely is
that this theory is IR conformal. To put this statement
on solid grounds, more accurate lattice studies are still
necessary.

The discussion presented in this paper outlines a strat-
egy to understand the phase of the massless theory in the
continuum limit. Simulations will be extended to other
values of the lattice spacing a, and smaller pseudoscalar
masses, with the twofold aim to extrapolate the results
to the continuum and to keep under control cutoff effects
on the spectrum. This should allow us to resolve the is-
sues related to the possibility of our constituent fermions
being still too heavy, and of our spectrum being influ-
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enced by an IR fixed point not related to the continuum
theory. The comparison of the gluonic and the mesonic
sector looks like a promising way to address the issue
of conformality by lattice simulations. Finally, following
the recent numerical studies of the conformal window in
SU(3) gauge theory with fermions in the fundamental
representation [32, 33, 34, 35, 36], we notice that apply-
ing a combined analysis of the meson and glueball spec-
trum to that theory at both ends of the conformal phase
could help to clarify the physics of theories with IR fixed
points.

We are indebted with C. Allton, T. DeGrand, A. Hasen-
fratz, M. Piai, and F. Sannino for insightful discussions.
This work has been partially supported by STFC un-
der contracts PP/E007228/1 and ST/G000506/1. BL is
supported by the Royal Society. LDD is supported by
an STFC advanced fellowship. Definite progress towards
the completion of this work was made during the fruitful
Large–N conference in Swansea. Most of the numerical
results presented in this work have been obtained on the
BlueC supercomputer at Swansea University.
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