175 research outputs found

    Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges

    Get PDF
    BACKGROUND: Adoptive immunotherapies are among the pillars of ongoing biological breakthroughs in neuro-oncology, as their potential applications are tremendously wide. The present literature review comprehensively classified adoptive immunotherapies in neuro-oncology, provides an update, and overviews the main translational challenges of this approach. METHODS: The PubMed/MEDLINE platform, Medical Subject Heading (MeSH) database, and ClinicalTrials.gov website were the sources. The MeSH terms "Immunotherapy, Adoptive," "Cell- and Tissue-Based Therapy," "Tissue Engineering," and "Cell Engineering" were combined with "Central Nervous System," and "Brain." "Brain tumors" and "adoptive immunotherapy" were used for a further unrestricted search. Only articles published in the last 5 years were selected and further sorted based on the best match and relevance. The search terms "Central Nervous System Tumor," "Malignant Brain Tumor," "Brain Cancer," "Brain Neoplasms," and "Brain Tumor" were used on the ClinicalTrials.gov website. RESULTS: A total of 79 relevant articles and 16 trials were selected. T therapies include chimeric antigen receptor T (CAR T) cell therapy and T cell receptor (TCR) transgenic therapy. Natural killer (NK) cell-based therapies are another approach; combinations are also possible. Trials in phase 1 and 2 comprised 69% and 31% of the studies, respectively, 8 of which were concluded. CAR T cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) was demonstrated to reduce the recurrence rate of glioblastoma after standard-of-care treatment. CONCLUSION: Adoptive immunotherapies can be classified as T, NK, and NKT cell-based. CAR T cell therapy redirected against EGFRvIII has been shown to be the most promising treatment for glioblastoma. Overcoming immune tolerance and immune escape are the main translational challenges in the near future of neuro-oncology

    Coordinate regulation of DNA methyltransferase expression during oogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal mammalian development requires the action of DNA methyltransferases (DNMTs) for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of <it>Dnmt3a </it>and <it>Dnmt3b</it>, as well as a regulator of DNA methylation, <it>Dnmt3L</it>, in isolated female germ cells.</p> <p>Results</p> <p>Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated <it>Snrpn</it>, <it>Peg3 </it>and <it>Igf2r </it>DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the <it>de novo </it>methyltransferase <it>Dnmt3b</it>, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases.</p> <p>Conclusion</p> <p>Together these results provide a better understanding of the developmental regulation of <it>Dnmt3a</it>, <it>Dnmt3b </it>and <it>Dnmt3L </it>at the time of <it>de novo </it>methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.</p

    Innovative therapies for malignant brain tumors: the road to a tailored cure

    Get PDF
    Background: Immune tolerance, immune escape, neoangiogenesis, phenotypic changes, and glioma stem cells are all responsible for the resistance of malignant brain tumors to current therapies and persistent recurrence. The present study provides a panoramic view of innovative therapies for malignant brain tumors, especially glioblastoma, aimed at achieving a tailored approach. Methods: PubMed/Medline and ClinicalTri-als.gov were the main sources of an extensive literature review in which “Regenerative Medicine,” “Cell-Based Therapy,” “Chemotherapy,” “Vaccine,” “Cell Engineering,” “Immunotherapy, Active,” “Immunotherapy, Adoptive,” “Stem Cells,” “Gene Therapy,” “Target Therapy,” “Brain Cancer,” “Glioblastoma,” and “Malignant Brain Tumor” were the search terms. Only articles in English published in the last 5 years were included. A further selection was made according to the quality of the studies and level of evidence. Results: Cell-based and targeted therapies represent the newest frontiers of brain cancer treatment. Active and adoptive im-munotherapies, stem cell therapies, and gene therapies represent a tremendous evolution in recent years due to many preclinical and clinical studies. Clinical trials have validated the effectiveness of antibody-based immunotherapies, including an in-depth study of bevacizumab, in combination with standard of care. Pre-clinical data highlights the role of vaccines, stem cells, and gene therapies to prevent recurrence. Conclusion: Monoclonal antibodies strengthen the first-line therapy for high grade gliomas. Vaccines, engineered cells, stem cells, and gene and targeted therapies are good candidates for second-line treatment of both newly diagnosed and recurrent gliomas. Further data are necessary to validate this tailored approach at the bedside. (www.actabiomedica.it)

    Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas

    Get PDF
    Background: The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. Methods: A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms “Target Therapy”, “Target drug” and “Tailored Therapy” were combined with the terms “High-grade gliomas”, “Malignant brain tumor” and “Glioblastoma”. Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were “Central Nervous System Tumor”, “Malignant Brain Tumor”, “Brain Cancer”, “Brain Neoplasms” and “High-grade gliomas”. Results: A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. Conclusion: Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblas-toma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagen-esis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas. (www.actabiomedica.it)

    The impact of stem cells in neuro-oncology: applications, evidence, limitations and challenges

    Get PDF
    Background: Stem cells (SCs) represent a recent and attractive therapeutic option for neuro-oncology, as well as for treating degenerative, ischemic and traumatic pathologies of the central nervous system. This is mainly because of their homing capacity, which makes them capable of reaching the inaccessible SC niches of the tumor, therefore, acting as living drugs. The target of the study is a comprehensive overview of the SC-based therapies in neuro-oncology, also highlighting the current translational challenges of this type of approach. Methods: An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites, restricting it to the most pertinent keywords regarding the systematization of the SCs and their therapeutic use for malignant brain tumors. A large part of the search was dedicated to clinical trials. Only preclinical and clinical data belonging to the last 5 years were shortlisted. A further sorting was implemented based on the best match and relevance. Results: The results consisted in 96 relevant articles and 31 trials. Systematization involves a distinction between human embryonic, fetal and adult, but also totipo-tent, pluripotent or multipotent SCs. Mesenchymal and neuronal SCs were the most studied for neuro-oncological illnesses. 30% and 50% of the trials were phase I and II, respectively. Conclusion: Mesenchymal and neuronal SCs are ideal candidates for SCs-based therapy of malignant brain tumors. The spectrum of their possible applications is vast and is mainly based on the homing capacity toward the tumor microenvironment. Availability, delivery route, oncogenicity and ethical issues are the main translational challenges concerning the use of SCs in neuro-oncology. (www.actabiomedica.it)

    Targeting the medulloblastoma: A molecular-based approach

    Get PDF
    Background: The lack of success of standard therapies for medulloblastoma has highlighted the need to plan a new therapeutic approach. The purpose of this article is to provide an overview of the novel treatment strategies based on the molecular characterization and risk categories of the medulloblastoma, also focusing on up-to-date relevant clinical trials and the challenges in translating tailored approaches into clinical practice. Methods: An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites about molecular classification of medulloblastomas, ongoing clinical trials and new treatment strategies. Only articles in the English language and published in the last five years were selected. The research was refined based on the best match and relevance. Results: A total 58 articles and 51 clinical trials were analyzed. Trials were of phase I, II, and I/II in 55%, 33% and 12% of the cases, respectively. Target and adoptive immunotherapies were the treatment strategies for newly diagnosed and recurrent me-dulloblastoma in 71% and 29% of the cases, respectively. Conclusion: Efforts are focused on the fine-tuning of target therapies and immunotherapies, including agents directed to specific pathways, engineered T-cells and oncoviruses. The blood-brain barrier, chemoresistance, the tumor microenvironment and cancer stem cells are the main translational challenges to be overcome in order to optimize medulloblastoma treatment, reduce the long-term morbidity and increase the overall survival. (www.actabiomedica.it)

    Rating the incidence of iatrogenic vascular injuries in thoracic and lumbar spine surgery as regards the approach: A PRISMA-based literature review

    Get PDF
    Purpose: To assess the rate, timing of diagnosis, and repairing strategies of vascular injuries in thoracic and lumbar spine surgery as their relationship to the approach. Methods: PubMed, Medline, and Embase databases were utilized for a comprehensive literature search based on keywords and mesh terms to find articles reporting iatrogenic vascular injury during thoracic and lumbar spine surgery. English articles published in the last ten years were selected. The search was refined based on best match and relevance. Results: Fifty-six articles were eligible, for a cumulative volume of 261 lesions. Vascular injuries occurred in 82% of instrumented procedures and in 59% during anterior approaches. The common iliac vein (CIV) was the most involved vessel, injured in 49% of anterior lumbar approaches. Common iliac artery, CIV, and aorta were affected in 40%, 28%, and 28% of posterior approaches, respectively. Segmental arteries were injured in 68% of lateral approaches. Direct vessel laceration occurred in 81% of cases and recognized intraoperatively in 39% of cases. Conclusions: Incidence of iatrogenic vascular injuries during thoracic and lumbar spine surgery is low but associated with an overall mortality rate up to 65%, of which less than 1% for anterior approaches and more than 50% for posterior ones. Anterior approaches for instrumented procedures are at risk of direct avulsion of CIV. Posterior instrumented fusions are at risk for injuries of iliac vessels and aorta. Lateral routes are frequently associated with lesions of segmental vessels. Suture repair and endovascular techniques are useful in the management of these severe complications

    Clinical outcomes in the second versus first pandemic wave in italy: Impact of hospital changes and reorganization

    Get PDF
    The region of Lombardy was the epicenter of the COVID‐19 outbreak in Italy. Emergency Hospital 19 (EH19) was built in the Milan metropolitan area during the pandemic’s second wave as a facility of Humanitas Clinical and Research Center (HCRC). The present study aimed to assess whether the implementation of EH19 was effective in improving the quality of care of COVID‐19 patients during the second wave compared with the first one. The demographics, mortality rate, and in‐hospital length of stay (LOS) of two groups of patients were compared: the study group involved patients admitted at HCRC and managed in EH19 during the second pandemic wave, while the control group included patients managed exclusively at HCRC throughout the first wave. The study and control group included 903 (56.7%) and 690 (43.3%) patients, respectively. The study group was six years older on average and had more pre‐existing comorbidities. EH19 was associated with a decrease in the intensive care unit admission rate (16.9% vs. 8.75%, p &lt; 0.001), and an equal decrease in invasive oxygen therapy (3.8% vs. 0.23%, p &lt; 0.001). Crude mortality was similar but overlap propensity score weighting revealed a trend toward a potential small decrease. The adjusted difference in LOS was not significant. The implementation of an additional COVID‐ 19 hospital facility was effective in improving the overall quality of care of COVID‐19 patients during the first wave of the pandemic when compared with the second. Further studies are necessary to validate the suggested approach

    Trauma coagulopathy and its outcomes

    Get PDF
    Background and Objectives: Trauma coagulopathy begins at the moment of trauma. This study investigated whether coagulopathy upon arrival in the emergency room (ER) is correlated with increased hemotransfusion requirement, more hemodynamic instability, more severe anatomical damage, a greater need for hospitalization, and hospitalization in the intensive care unit (ICU). We also analyzed whether trauma coagulopathy is correlated with unfavorable indices, such as acidemia, lactate increase, and base excess (BE) increase. Material and Methods: We conducted a prospective, monocentric, observational study of all patients (n = 503) referred to the Department of Emergency and Acceptance, IRCCS Fondazione Policlinico San Matteo, Pavia, for major trauma from 1 January 2018 to 30 January 2019. Results: Of the 503 patients, 204 had trauma coagulopathy (group 1), whereas 299 patients (group 2) did not. Group 1 had a higher hemotransfusion rate than group 2. In group 1, 15% of patients showed hemodynamic instability compared with only 8% of group 2. The shock index (SI) distribution was worse in group 1 than in group 2. Group 1 was more often hypotensive, tachycardic, and with low oxygen saturation, and had a more severe injury severity score than group 2. In addition, 47% of group 1 had three or more body districts involved compared with 23% of group 2. The hospitalization rate was higher in group 1 than in group 2 (76% vs. 58%). The length of hospitalization was >10 days for 45% of group 1 compared with 28% of group 2. The hospitalization rate in the ICU was higher in group 1 than in group 2 (22% vs. 14.8%). The average duration of ICU hospitalization was longer in group 1 than in group 2 (12.5 vs. 9.78 days). Mortality was higher in group 1 than in group 2 (3.92% vs. 0.98%). Group 1 more often had acidemia and high lactates than group 2. Group 1 also more often had BE <−6. Conclusions: Trauma coagulopathy patients, upon arrival in the ER, have greater hemotransfusion (p = 0.016) requirements and need hospitalization (p = 0.032) more frequently than patients without trauma coagulopathy. Trauma coagulopathy seems to be more present in patients with a higher injury severity score (ISS) (p = 0.000) and a greater number of anatomical districts involved (p = 0.000). Head trauma (p = 0.000) and abdominal trauma (p = 0.057) seem related to the development of trauma coagulopathy. Males seem more exposed than females in developing trauma coagulopathy (p = 0.018). Upon arrival in the ER, the presence of tachycardia or alteration of SI and its derivatives can allow early detection of patients with trauma coagulopathy
    • 

    corecore