2,222 research outputs found

    Dynamic Dilatonic Domain Walls

    Get PDF
    Motivated by the ``universe as a brane'' idea, we investigate the motion of a (D2)(D-2)-brane (or domain wall) that couples to bulk matter. Usually one would expect the spacetime outside such a wall to be time dependent however we show that in certain cases it can be static, with consistency of the Israel equations yielding relationships between the bulk metric and matter that can be used as ans\"atze to solve the Einstein equations. As a concrete model we study a domain wall coupled to a bulk dilaton with Liouville potentials for the dilaton both in the bulk and on the wall. The bulk solutions we find are all singular but some have black hole or cosmological horizons, beyond which our solutions describe domain walls moving in time dependent bulks. A significant period of world volume inflation occurs if the potential on the wall is not too steep; in some cases the bulk also inflates (with the wall comoving) while in others the wall moves relative to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space. tive to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space.Comment: 32 pages LaTeX, 5 .eps figures, corrected some typo

    Grain boundary effects on magnetotransport in bi-epitaxial films of La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    The low field magnetotransport of La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO) films grown on SrTiO3_3 substrates has been investigated. A high qualtity LSMO film exhibits anisotropic magnetoresistance (AMR) and a peak in the magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films prepared using a seed layer of MgO and a buffer layer of CeO2_2 display a resistance dominated by grain boundaries. One film was prepared with seed and buffer layers intact, while a second sample was prepared as a 2D square array of grain boundaries. These films exhibit i) a low temperature tail in the low field magnetoresistance; ii) a magnetoconductance with a constant high field slope; and iii) a comparably large AMR effect. A model based on a two-step tunneling process, including spin-flip tunneling, is discussed and shown to be consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format (zdf1.jpg); the eps was huge. Accepted to Phys. Rev.

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Time-dependent Stochastic Modeling of Solar Active Region Energy

    Full text link
    A time-dependent model for the energy of a flaring solar active region is presented based on a stochastic jump-transition model (Wheatland and Glukhov 1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model active region varies in time due to a prescribed (deterministic) rate of energy input and prescribed (random) flare jumps downwards in energy. The model has been shown to reproduce observed flare statistics, for specific time-independent choices for the energy input and flare transition rates. However, many solar active regions exhibit time variation in flare productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010). In this case a time-dependent model is needed. Time variation is incorporated for two cases: 1. a step change in the rates of flare jumps; and 2. a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The new model retains flare-like event statistics. In each case the frequency-energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case~1 are presented which confirm the analytic estimates. The simulation results provide a qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure

    All Vacuum Near-Horizon Geometries in DD-dimensions with (D3)(D-3) Commuting Rotational Symmetries

    Full text link
    We explicitly construct all stationary, non-static, extremal near horizon geometries in DD dimensions that satisfy the vacuum Einstein equations, and that have D3D-3 commuting rotational symmetries. Our work generalizes [arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been given in D=4,5D=4,5. But our method is different from theirs and relies on a matrix formulation of the Einstein equations. Unlike their method, this matrix formulation works for any dimension. The metrics that we find come in three families, with horizon topology S2×TD4S^2 \times T^{D-4}, or S3×TD5S^3 \times T^{D-5}, or quotients thereof. Our metrics depend on two discrete parameters specifying the topology type, as well as (D2)(D3)/2(D-2)(D-3)/2 continuous parameters. Not all of our metrics in D6D \ge 6 seem to arise as the near horizon limits of known black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added, discussion of the parameters specifying solutions corrected, amended to match published versio

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.6320.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=0.7880.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Λ\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ω0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Λ\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    On the modelling of precipitation kinetics in a Turbine disc nickel based superalloy

    Get PDF
    The precipitation kinetics of gamma prime in the nickel based superalloy RR1000 has been characterised after solid-solution heat treatments and isothermal aging conditions relevant to service conditions. Multi-modal precipitate dispersions are formed within the alloy. Numerical methods are presented for determining the three dimensional size of the particle populations combining information obtained from Scanning Electron microscopy and Transmission Electron microscopy. This information has been used to develop a multi-component mean-field model descriptive of precipitation kinetics. The smallest particle population increases in mean size during isothermal aging at 700∘ C where classical mean-field models of coarsening kinetics suggest that these particles should dissolve. A phenomenological model has been proposed to capture this behaviour within a statistical formulation that is applicable to both processing and service conditions
    corecore