67 research outputs found

    Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Get PDF
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25<log(M/M)<10.7510.25<{\rm log}(M_*/M_\odot)<10.75 and z<0.2z<0.2 classified according to their intrinsic uru^*-r^* colour. From single component S\'ersic fits, we find that the stellar mass-sensitive KK-band profiles of red and green galaxy populations are very similar, while gg-band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley 12\sim 1-2~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r\^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation

    Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows

    Get PDF
    Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data exist. Our approach should inform the design of new seed mixes to ensure continuity in floral resource availability throughout the year, and to identify suitable species to fill resource gaps in established mixes

    Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons

    Get PDF
    Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease

    Neuronal Nitric Oxide Synthase-Rescue of Dystrophin/Utrophin Double Knockout Mice does not Require nNOS Localization to the Cell Membrane

    Get PDF
    Survival of dystrophin/utrophin double-knockout (dko) mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS) transgene. Dko mice expressing the transgene (nNOS TG+/dko) experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide)-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span

    Biofilm in wound care

    No full text
    corecore