22 research outputs found

    A contribution to the ultrastructural knowledge of the pollen exine in subtribe Inulinae (Inuleae, Asteraceae)

    Get PDF
    Abstract To better understand the relationships within the Asteroideae and Inuleae, the structure of the pollen exine was investigated in seven genera and nine species of the subtribe Inulinae using LM, TEM and SEM. All taxa have a senecioid pattern of exine. The tectal complex consists of three main layers that differ in thickness and morphology: a tectum, a columellar layer, and a layer consisting of the basal region of the columellae. The absence or the vestigial condition of the foramina is considered as a plesiomorphy within the Asteroideae. All taxa have a complex apertural system that consists of an ecto-, a meso-, and an endoaperture. These apertures intersect respectively the tectal complex, the foot layer and the upper part of the endexine, and the inner layer of the endexine. A continuous transition among the different species of Inulinae was found for all the quantitative characters examined. This relative homogeneity of the pollen morphological characters enhances the naturality of the subtribe Inulinae

    Domain II hairpin structure in ITS1 sequences as an aid in differentiating recently evolved animal and plant pathogenic fungi

    No full text
    The hypothesis that ITS structural features can be used to define fungal groups, where sequence analysis is unsatisfactory, was examined in plant and animal pathogenic fungi. Structural models of ITS1 regions were predicted for presumed closely related species in Colletotrichum and Trichophyton anamorphs of Arthroderma species. Structural alignment of models and comparison with ITS sequence analysis identified a variable region in a conserved hairpin formed from a common inverted repeat. Thirteen different hairpin structure models were obtained for Colletotrichum species and five different models were obtained for Trichophyton species. The different structure types could be matched to individual species and species complexes as defined by ITS sequence analysis

    Targeted multi-pinhole SPECT

    No full text
    Purpose: Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific organs and tumours, and validate the effects of improved targeting of the pinhole focus. Methods: A SPECT system with 75 pinholes and stationary detectors was used (U-SPECT-II). An XYZ stage automatically translates the animal bed with a specific sequence in order to scan a selected volume of interest. Prior to stepping the animal through the collimator, integrated webcams acquire images of the animal. Using sliders, the user designates the desired volume to be scanned (e.g. a xenograft or specific organ) on these optical images. Optionally projections of an atlas are overlaid semiautomatically to locate specific organs. In order to assess the effects of more targeted imaging, scans of a resolution phantom and a mouse myocardial phantom, as well as in vivo mouse cardiac and tumour scans, were acquired with increased levels of targeting. Differences were evaluated in terms of count yield, hot rod visibility and contrast-to-noise ratio. Results: By restricting focused SPECT scans to a 1.13-ml resolution phantom, count yield was increased by a factor 3.6, and visibility of small structures was significantly enhanced. At equal noise levels, the small-lesion contrast measured in the myocardial phantom was increased by 42%. Noise in in vivo images of a tumour and the mouse heart was significantly reduced. Conclusion: Targeted pinhole SPECT improves images and can be used to shorten scan times. Scan planning with optical cameras provides an effective tool to exploit this principle without the necessity for additional X-ray CT imaging.Radiation, Radionuclides and ReactorsApplied Science

    Is there a relationship between socio-economic factors and biodiversity in urban ponds? A study in the city of Stockholm

    Get PDF
    Urban small water bodies, such as ponds, are essential elements of human socio-economic landscapes. Ponds also provide important habitats for species that would otherwise not survive in the urban environment. Knowledge on the biodiversity of urban ponds and the relationship between their ecological value and factors linked to urbanization and socio-economic status is crucial for decisions on where and how to establish and manage ponds in cities to deliver maximum biodiversity benefits. Our study investigates if the pattern of urban-pond biodiversity can be related to different socio-economic factors, such as level of wealth, education or percentage of buildings of different types. Because of lack of previous studies investigating that, our study is of exploratory character and many different variables are used.We found that the biodiversity of aquatic insects was significantly negatively associated with urbanisation variables such as amount of buildings and number of residents living around ponds. This relationship did not differ depending on the spatial scale of our investigation. In contrast, we did not find a significant relationship with variables representing socio-economic status, such as education level and wealth of people. This latter result suggests that the socio-economic status of residents does not lead to any particular effect in terms of the management and function of ponds that would affect biodiversity. However, there is a need for a finer-scale investigation of the different potential mechanism in which residents in areas with differing socio-economic status could indirectly influence ponds
    corecore