99 research outputs found

    Programmed Death-1 and Its Ligand Are Novel Immunotolerant Molecules Expressed on Leukemic B Cells in Chronic Lymphocytic Leukemia

    Get PDF
    Programmed death-1 (PD-1) is an immunoreceptor predominantly expressed on exhausted T cells, which through an interaction with its ligand (PD-L1), controls peripheral tolerance by limiting effector functions of T lymphocytes. qRT-PCR for PD-1, PD-L1 and their splicing forms as well as flow cytometric assessment of surface expression was performed in a cohort of 58 chronic lymphocytic leukemia (CLL) patients. In functional studies, we assessed the influence of the proliferative response of leukemic B-cells induced by IL-4 and CD40L on PD-1 transcripts and expression on the protein level. The median level of PD-1, but not PD-L1, transcripts in CLL patients was higher in comparison to healthy volunteers (HVs, n = 43, p = 0.0057). We confirmed the presence of PD-1 and PD-L1 on the CLL cell surface, and found the expression of PD-1, but not PD-L1, to be higher among CLL patients in comparison to HVs (47.2% vs. 14.8%, p<0.0001). The Kaplan-Meier curves for the time to progression and overall survival in groups with high and low surface expression of PD-1 and PD-L1 revealed no prognostic value in CLL patients. After stimulation with IL-4 and CD40L, protein expression of PD-1 was significantly increased in samples that responded and up-regulated CD38. PD-1, which is aberrantly expressed both at mRNA and cell surface levels in CLL cells might represent a novel immunotolerant molecule involved in the pathomechanism of the disease, and could provide a novel target for future therapies

    Optimizing the Design of Oligonucleotides for Homology Directed Gene Targeting

    Get PDF
    BACKGROUND: Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. METHODOLOGY/PRINCIPAL FINDINGS: In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA) polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. CONCLUSION AND SIGNIFICANCE: A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases) in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA

    Antibody Complementarity-Determining Regions (CDRs) Can Display Differential Antimicrobial, Antiviral and Antitumor Activities

    Get PDF
    Background: Complementarity-determining regions (CDRs) are immunoglobulin (Ig) hypervariable domains that determine specific antibody (Ab) binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. the possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here.Methodology/Principal Findings: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a) a protein epitope of Candida albicans cell wall stress mannoprotein; b) a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c) a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. the inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains.Conclusions/Significance: the high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. the easy production and low cost of small sized synthetic peptides representing Ig CDRs and the possibility of peptide engineering and chemical optimization associated to new delivery mechanisms are expected to give rise to a new generation of therapeutic agents.Department of Education, Universities and Research, Basque GovermentFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Istituto Superiore di Sanita, National Research Project on A.I.D.S.Cariparma Banking FoundationBrazilian National Research CouncilUniv Parma, Sez Microbiol, Dipartimento Patol, I-43100 Parma, ItalyUniv Basque Country, Fac Med Odontol, Dept Inmunol, Microbiol Parasitol, Bilbao, SpainUniv Basque Country, Dept Enfermeria I, Bilbao, SpainUniv Milan, Dipartimento Sci Cliniche L Sacco, Sez Malattie Infettive Immunopatol, Milan, ItalyUniv Studi Parma, Dipartimento Clin Med, Nefrol Sci Prev, Parma, ItalyUniversidade Federal de São Paulo, Departamento Microbiol, Imunol Parasitol, Unidade Oncol Expt, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biofis, São Paulo, BrazilUniversidade Federal de São Paulo, Departamento Microbiol, Imunol Parasitol, Unidade Oncol Expt, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biofis, São Paulo, BrazilDepartment of Education, Universities and Research, Basque Goverment: IT-264-07FAPESP: 06/50634-2Istituto Superiore di Sanita, National Research Project on A.I.D.S.: 50G.30Istituto Superiore di Sanita, National Research Project on A.I.D.S.: 40D.14Cariparma Banking Foundation: 2004.0190Brazilian National Research Council: research fellowshipWeb of Scienc

    VE-statin/egfl7 Expression in Endothelial Cells Is Regulated by a Distal Enhancer and a Proximal Promoter under the Direct Control of Erg and GATA-2

    Get PDF
    Angiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult. We studied here the regulatory mechanisms that control this tissue-specific expression. RT-qPCR analyses showed that the specificity of expression of VE-statin/egfl7 in endothelial cells is not shared with its closest neighbor genes notch1 and agpat2 on the mouse chromosome 2. Chromatin-immunoprecipitation analysis of histone modifications at the VE-statin/egfl7 locus showed that the chromatin is specifically opened in endothelial cells, but not in fibroblasts at the transcription start sites. A 13 kb genomic fragment of promoter was cloned and analyzed by gene reporter assays which showed that two conserved regions are important for the specific expression of VE-statin/egfl7 in endothelial cells; a −8409/−7563 enhancer and the −252/+38 region encompassing the exon-1b transcription start site. The latter contains essential GATA and ETS-binding sites, as assessed by linker-scanning analysis and site-directed mutagenesis. An analysis of expression of the ETS and GATA transcription factors showed that Erg, Fli-1 and GATA-2 are the most highly expressed factors in endothelial cells. Erg and GATA-2 directly control the expression of the endogenous VE-statin/egfl7 while Fli-1 probably exerts an indirect control, as assessed by RNA interference and chromatin immunoprecipitation. This first detailed analysis of the mechanisms that govern the expression of the VE-statin/egfl7 gene in endothelial cells pinpoints the specific importance of ETS and GATA factors in the specific regulation of genes in this cell lineage

    The HIV-1 transmission bottleneck

    Full text link

    The HIV-1 transmission bottleneck

    Get PDF
    It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient

    Immunoregulation in human malaria: the challenge of understanding asymptomatic infection

    Full text link
    • …
    corecore