17 research outputs found

    Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature.

    Get PDF
    Goalkeepers are typically the last defensive line for soccer teams aiming to minimise goals being conceded, with match rules permitting ball handling within a specific area. Goalkeepers are also involved in initiating some offensive plays, and typically remain in close proximity to the goal line while covering ~ 50% of the match distances of outfield players; hence, the competitive and training demands of goalkeepers are unique to their specialised position. Indeed, isolated performance tests differentiate goalkeepers from outfield players in multiple variables. With a view to informing future research, this review summarised currently available literature reporting goalkeeper responses to: (1) match play (movement and skilled/technical demands) and (2) isolated performance assessments (strength, power, speed, aerobic capacity, joint range of motion). Literature searching and screening processes yielded 26 eligible records and highlighted that goalkeepers covered ~ 4-6 km on match day whilst spending ~ 98% of time at low-movement intensities. The most decisive moments are the 2-10 saves·match-1 performed, which often involve explosive actions (e.g. dives, jumps). Whilst no between-half performance decrements have been observed in professional goalkeepers, possible transient changes over shorter match epochs remain unclear. Isolated performance tests confirm divergent profiles between goalkeepers and outfield players (i.e. superior jump performance, reduced [Formula: see text]2max values, slower sprint times), and the training of soccer goalkeepers is typically completed separately from outfield positions with a focus primarily on technical or explosive drills performed within confined spaces. Additional work is needed to examine the physiological responses to goalkeeper-specific training and match activities to determine the efficacy of current preparatory strategies

    Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities

    No full text
    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the winter but not present during the other seasons

    A global initiative for ecological and evolutionary hologenomics

    No full text
    The Earth Hologenome Initiative (EHI) is a global collaboration to generate and analyse hologenomic data from wild animals and associated microorganisms using standardised methodologies underpinned by open and inclusive research principles. Initially focused on vertebrates, it aims to re-examine ecological and evolutionary questions by studying host–microbiota interactions from a systemic perspective
    corecore