10,140 research outputs found

    Transferrin as a source of iron for Campylobacter rectus

    Get PDF
    Background and Objective: Campylobacter rectus is considered as one of the bacterial species of etiological importance in periodontitis. Iron-containing proteins such as transferrin are found in periodontal sites and may serve as a source of iron for periodontopathogens. The aim of this study was to investigate the capacity of C. rectus to assimilate transferrin-bound iron to support its growth. Design: Growth studies were performed in broth media pretreated with an iron-chelating resin and supplemented with various iron sources. The uptake of iron by C. rectus was monitored using 55Fe-transferrin. Transferrin-binding activity was assessed using a microplate assay while the degradation of transferrin and iron removal was evaluated by polyacrylamide gel electrophoresis. A colorimetric assay was used to determine ferric reductase activity. Results: Holotransferrin (iron-saturated form) but not apotransferrin (iron-free form) was found to support growth of C. rectus in an iron-restricted culture medium. Incubation of holotransferrin with cells of C. rectus resulted in removal of iron from the protein. A time dependent intracellular uptake of iron by C. rectus cells from 55Fe-transferrin was demonstrated. This uptake was significantly increased when bacteria were grown under an iron-limiting condition. Cells of C. rectus did not show transferrin-binding activity or proteolytic activity toward transferrin. However, a surface-associated ferric reductase activity was demonstrated. Conclusion: To survive and multiply in periodontal sites, periodontopathogens must possess efficient iron-scavenging mechanisms. In this study, we showed the capacity of C. rectus to assimilate iron from transferrin to support its growth. The uptake of iron appears to be dependent on a ferric reductive pathway

    Penicillin-binding proteins of protoplast and sporoplast membranes of Streptomyces griseus strains

    Get PDF
    Membrane-bound penicillin-binding proteins (PBPs) of two Streptomyces griseus strains that sporulate well in liquid and solid medium have been investigated during the course of their life-cycle. The PBP patterns were analyzed by sodium dodecylsulphate polyacrylamide-gel electrophoresis and fluorography. One strain (No. 45 H) has only a single band (mol wt: 27,000) in early log phase, and two additional PBPs of higher mol wt (69,000 and 80,000) in the late log phase. The other strain (No. 2682) possessed two bands with mol wts 27,000 and 38,000 which did not change during its vegetative phase. In strain No. 2682, a new PBP with a mol wt of 58,000 appeared in spore membranes while one of those (mol wt 38,000) present in mycelial membranes disappeared. Our results suggest that appearance of the new PBP in the spore may be associated with the sporulation process. The major PBP band (mol wt: 27,000) present in all stages of the life cycle of these strains, may be characteristic of S. griseus while the other PBPs reflect certain stages of the life cycle. A new method was developed for the production of spore protoplasts by consecutive enzymatic treatments.

    Bacterial adaptation through distributed sensing of metabolic fluxes

    Get PDF
    We present a large-scale differential equation model of E. coli's central metabolism and its enzymatic, transcriptional, and posttranslational regulation. This model reproduces E. coli's known physiological behavior.We found that the interplay of known interactions in E. coli's central metabolism can indirectly recognize the presence of extracellular carbon sources through measuring intracellular metabolic flux patterns.We found that E. coli's system-level adaptations between glycolytic and gluconeogenic carbon sources are realized on the molecular level by global feedback architectures that overarch the enzymatic and transcriptional regulatory layers.We found that the capability for closed-loop self-regulation can emerge within metabolism itself and therefore, metabolic operation may adapt itself autonomously to changing carbon sources (not requiring upstream sensing and signaling)

    Characterization of the Plasmidic or Chromosomal cpe Gene and Metabolic Activities in Clostridium perfringens Isolates from Food in San Luis - Argentina

    Get PDF
    Food poisoning and non-food poisoning illnesses due to C. perfringens (by enterotoxin production) have been associated to chromosomal or plasmidic location of the cpe gene, respectively. Clostridial pathogenicity has been correlated to protease and azoreductase production.The aim of this work was: i) to assess the sanitary-hygienic quality of dehydrated soups (100 samples) consumed in San Luis – Argentina; ii) to verify the presence of C. perfringens in these food products using the "Most Probable Number" method (MPN) and plate-counting methods; iii) to characterise enterotoxigenicity in strain isolates by RPLA; iv) to determine the chromosomal or plasmidic location of the cpe gene in enterotoxigenic strains previously isolated from food in our lab, using PCR; v) to correlate chromosomal cpe and spore heat-resistance; vi) to compare protease activity in cpe+ and cpe– strains; and vii) to compare azoreductase activity in cpe+ and cpe– strains. Twenty-six isolates had a count a 3–43 bacteria g-1 count using MPN; 7.7% exceeded the Argentine Food Code (CAA) limit. All isolates showed protease activity: enterotoxigenic isolates had higher protease activity than non-enterotoxigenic isolates. All isolates showed azoreductase activity: enterotoxigenic isolates had higher activity and shorter reducing times. Enterotoxigenic isolates showed chromosomal location for the gene responsible for the enterotoxin.Fil: Corigliano, Mariana Georgina. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Guzmán, Ana María Stefanini. Universidad Nacional de San Luis; ArgentinaFil: Stagnitta, Patricia Virginia. Universidad Nacional de San Luis; Argentin

    Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    Get PDF
    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based analysis of these data. By coupling the data to an operating metabolic network via the second law of thermodynamics and the metabolites' Gibbs energies of formation, NET analysis allows inferring functional principles from quantitative metabolite data; for example it identifies reactions that are subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET analysis was demonstrated to be a valuable tool to systematically investigate data sets for consistency, for the extension of sub-omic metabolome data sets and for resolving intracompartmental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights from quantitative metabolome data

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity
    corecore