641 research outputs found

    Unraveling the mechanism to form MoS2 lubricant layers from MoDTC by ab initio simulations

    Get PDF
    The morphology of molybdenum disulfide (MoS2) is a crucial aspect to ensure the functionality of this remarkable 2D-material both in electronic and tribological applications. Indeed, molybdenum dithiocarbamates (MoDTCs) can be tribochemically transformed into MoS2, which is able to reduce the friction coefficient of metallic moving parts. However, this transformation is influenced by temperature, sulfur/oxygen ratio, normal and shear stresses, making the mechanism of this process particularly challenging to explain. Ab initio simulations based on density functional theory (DFT), including a quantum mechanics/molecular mechanics (QM/MM) approach, are used here to shed light on the crystallization of MoS2 promoted by mechanical stresses. Chemistry plays an important role during the reorganization of the units of MoSx obtained from MoDTC, because sulfur and oxygen atoms tend to move outside of the amorphous layer, surrounding the molybdenum atoms and creating a structure that can crystallize into MoS2. Normal load and sliding have a synergistic effect in rearranging the amorphous units into a crystalline structure, as the former helps overcoming the energy barriers associated to bonds breaking and forming, while the latter allows misplaced atoms to be pulled towards the crystalline sites. A crystalline MoS2 was obtained by ab initio calculations below 1000 K

    High-Throughput First-Principles Prediction of Interfacial Adhesion Energies in Metal-on-Metal Contacts

    Get PDF
    : Adhesion energy, a measure of the strength by which two surfaces bind together, ultimately dictates the mechanical behavior and failure of interfaces. As natural and artificial solid interfaces are ubiquitous, adhesion energy represents a key quantity in a variety of fields ranging from geology to nanotechnology. Because of intrinsic difficulties in the simulation of systems where two different lattices are matched, and despite their importance, no systematic, accurate first-principles determination of heterostructure adhesion energy is available. We have developed robust, automatic high-throughput workflow able to fill this gap by systematically searching for the optimal interface geometry and accurately determining adhesion energies. We apply it here for the first time to perform the screening of around a hundred metallic heterostructures relevant for technological applications. This allows us to populate a database of accurate values, which can be used as input parameters for macroscopic models. Moreover, it allows us to benchmark commonly used, empirical relations that link adhesion energies to the surface energies of its constituent and to improve their predictivity employing only quantities that are easily measurable or computable

    Submicrometer-Channel Organic Transistors with MHz Operation Range on Flexible Substrates by a Low-Resolution Fabrication Technique

    Get PDF
    In this paper, the development of a simple and reproducible approach for the fabrication of n-type organic field-effect transistors with a 350 nm-long channel on flexible substrates is reported. The critical feature of the device, the channel length, is obtained using a self-alignment process that exploits the vertical step of a plasma-etched thin Parylene C layer, according to the so-called step-edge architecture. The fabricated devices can operate in continuous mode and show an average and maximum transition frequency of 2.5 MHz and 5.5 MHz, respectively. The possibility of easily obtaining high-performing, short channel organic transistors on flexible substrates, without the use of expensive and high-resolution techniques, represents an interesting step toward the miniaturization of flexible circuits in the field of large-area organic electronics

    A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy

    Get PDF
    A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model. We show that our data are in agreement with the crystal structure of an engineered LOV-domain protein, YF1, that shows the N-terminus of the protein to be helical and to fold back in between the β-sheets of the two LOV domains, and argue for an identical arrangement in YtvA. While we could not detect any structural changes upon blue-light activation of the protein, this structural model now forms an ideal basis for identifying residues as targets for further spin labelling studies to detect potential conformational changes upon irradiation of the protein

    Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma.

    Get PDF
    TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype

    Argyrophilic nucleolar organizer regions and bromodeoxyuridine and h3-thymidine labelling indices in colorectal cancer

    Get PDF
    The count of argyrophilic nucleolar organizer regions (AgNORs) has been proposed as a useful method for evaluating cell replication in human tumours. The current study was undertaken to compare AgNOR values in colorectal cancers with two better established methods for investigating cell proliferation such as bromodeoxyuridine (BrdUrd) and (3)[H]-thymidine ((3)[H]dT) labelling indices (LIs). Because some concern still exists regarding accuracy and reproducibility of AgNOR quantifying methods, we carried out a control study by independently repeating the same measurements (number, area and area per silver-stained NOR particle) in two centres with different operators and computer-assisted image analysers on 40 colorectal carcinomas. AgNOR values recorded in the two centres were strictly correlated (r = 0.75; P < 0.001 for number; r = 0.62, P < 0.01 for area; r = 0.63, P < 0.001 for area per silver-stained NOR particle) and the range of values were almost identical, Then, AgNOR values were compared with BrdUrd and (3)[H]dT LIs, respectively obtained by in vivo incorporation and in vitro incubation in the same series of colorectal carcinomas. No correlation was found between AgNOR values and BrdUrd or (3)[H]dT LIs. BrdUrd and (3)[H]dT LIs were instead reciprocally significantly correlated, No evident correlation was seen between LIs or AgNOR values and clinico-pathological parameters of the tumour. In conclusion, in colorectal neoplasms, AgNOR values did not appear to relate with more direct parameters of cell proliferation. It follows that AgNOR reliability as a biomarker of cell proliferation remains questionable

    Effect of platelet lysate on human cells involved in different phases of wound healing

    Get PDF
    Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing
    corecore