764 research outputs found

    Ab initio calculation of the 66 low lying electronic states of HeH+^+: adiabatic and diabatic representations

    Full text link
    We present an ab initio study of the HeH+^+ molecule. Using the quantum chemistry package MOLPRO and a large adapted basis set, we have calculated the adiabatic potential energy curves of the first 20 1Σ+^1 \Sigma^+, 19 3Σ+^3\Sigma^+, 12 1Π^1\Pi, 9 3Π^3\Pi, 4 1Δ^1\Delta and 2 3Δ^3\Delta electronic states of the ion in CASSCF and CI approaches. The results are compared with previous works. The radial and rotational non-adiabatic coupling matrix elements as well as the dipole moments are also calculated. The asymptotic behaviour of the potential energy curves and of the various couplings between the states is also studied. Using the radial couplings, the diabatic representation is defined and we present an example of our diabatization procedure on the 1Σ+^1\Sigma^+ states.Comment: v2. Minor text changes. 28 pages, 18 figures. accepted in J. Phys.

    Measuring resilience is essential to understand it

    Get PDF
    The terms sustainability, resilience and others group under the heading of ‘stability’. Their ubiquity speaks to a vital need to characterize changes in complex social and environmental systems. In a bewildering array of terms, practical measurements are essential to permit comparisons and so untangle underlying relationships

    Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests

    Get PDF
    International audienceForests play a key role in regulating the global carbon cycle, and yet the abiotic and biotic conditions that drive the demographic processes that underpin forest carbon dynamics remain poorly understood in natural ecosystems. To address this knowledge gap, we used repeat forest inventory data from 92,285 trees across four large permanent plots (4-25 ha in size) in temperate mixed forests in northeast China to ask the following questions: (1) How do soil conditions and stand age drive biomass demographic processes? (2) How do vegetation quality (i.e., functional trait diversity and composition) and quantity (i.e., initial biomass stocks) influence biomass demographic processes independently from soil conditions and stand age? (3) What is the relative contribution of growth, recruitment, and mortality to net biomass change? Using structural equation modeling, we showed that all three demographic processes were jointly constrained by multiple abiotic and biotic factors and that mortality was the strongest determinant on net biomass change over time. Growth and mortality, as well as functional trait diversity and the community-weighted mean of specific leaf area (CWM SLA), declined with stand age. By contrast, high soil phosphorous concentrations were associated with greater functional diversity and faster dynamics (i.e., high growth and mortality rates), but associated with lower CWM SLA and initial biomass stock. More functionally diverse communities also had higher recruitment rates, but did not exhibit faster growth and mortality. Instead, initial biomass stocks and CWM SLA were stronger predictors of biomass growth and mortality, respectively. By integrating the full spectrum of abiotic and biotic drivers of forest biomass dynamics, our study provides critical system-level insights needed to predict the possible consequences of regional changes in forest diversity, composition, structure and function in the context of global change

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Grand challenges in biodiversity-ecosystem functioning research in the era of science-policy platforms require explicit consideration of feedbacks

    Get PDF
    Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them

    Parallel ecological networks in ecosystems

    Get PDF
    In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah

    Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function

    Get PDF
    Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states
    corecore