1,680 research outputs found

    Submergence of the Sidebands in the Photon-assisted Tunneling through a Quantum Dot Weakly Coupled to Luttinger Liquid Leads

    Full text link
    We study theoretically the photon-assisted tunneling through a quantum dot weakly coupled to Luttinger liquids (LL) leads, and find that the zero bias dc conductance is strongly affected by the interactions in the LL leads. In comparison with the system with Fermi liquid (FL) leads, the sideband peaks of the dc conductance become blurring for 1/2<g<1, and finally merge into the central peak for g<1/2, (g is the interaction parameter in the LL leads). The sidebands are suppressed for LL leads with Coulomb interactions strong enough, and the conductance always appears as a single peak for any strength and frequency of the external time-dependent field. Furthermore, the quenching effect of the central peak for the FL case does not exist for g<1/2.Comment: 9 pages, 4 figure

    Efficiency of scanning and attention to faces in infancy independently predict language development in a multiethnic and bilingual sample of 2-year-olds

    Get PDF
    Efficient visual exploration in infancy is essential for cognitive and language development. It allows infants to participate in social interactions by attending to faces and learning about objects of interest. Visual scanning of scenes depends on a number of factors and early differences in efficiency are likely contributing to differences in learning and language development during subsequent years. Predicting language development in diverse samples is particularly challenging, as additional multiple sources of variability affect infant performance. In this study we tested how the complexity of visual scanning in the presence or absence of a face at 6-7 months of age is related to language development at 2 years of age in a multi-ethnic and predominantly bilingual sample from diverse socio-economic backgrounds. We used Recurrence Quantification Analysis to measure the temporal and spatial distribution of fixations recurring in the same area of a visual scene. We found that in the absence of a face the temporal distribution of re-fixations on selected objects of interest (but not all) significantly predicted both receptive and expressive language scores, explaining 16 - 20% of the variance. Also, lower rate of re-fixations recurring in the presence of a face predicted higher receptive language scores, suggesting larger vocabulary in infants that effectively disengage from faces. Altogether, our results suggest that dynamic measures, which quantify the complexity of visual scanning can reliably and robustly predict language development in highly diverse samples. They suggest that selective attending to objects predicts language independently of attention to faces. As eye-tracking and language assessments were carried out in early intervention centres, our study demonstrates the utility of mobile eye-tracking setups for early detection of risk in attention and language development

    Beyond fixation durations: Recurrence quantification analysis reveals spatiotemporal dynamics of infant visual scanning

    Get PDF
    Standard looking-duration measures in eye-tracking data provide only general quantitative indices, while details of the spatiotemporal structuring of fixation sequences are lost. To overcome this, various tools have been developed to measure the dynamics of fixations. However, these analyses are only useful when stimuli have high perceptual similarity and they require the previous definition of areas of interest (AOIs). Although these methods have been widely applied in adult studies, relatively little is known about the temporal structuring of infant gaze-foraging behaviors such as variability of scanning over time or individual scanning patterns. Thus, to shed more light on the spatiotemporal characteristics of infant fixation sequences we apply for the first time a new methodology for nonlinear time-series analysis—the recurrence quantification analysis (RQA). We present how the dynamics of infant scanning varies depending on the scene content during a "pop-out" search task. Moreover, we show how the normalization of RQA measures with average fixation durations provides a more detailed account of the dynamics of fixation sequences. Finally, we link the RQA measures of temporal dynamics of scanning with the spatial information about the stimuli using heat maps of recurrences without the need for defining a priori AOIs and present how infants’ foraging strategies are driven by the image content. We conclude from our findings that the RQA methodology has potential applications in the analysis of the temporal dynamics of infant visual foraging offering advantages over existing methods

    Deconstructing sarcomeric structure-function relations in titin-BioID knock-in mice

    Get PDF
    Proximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin's Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context

    Primordial nucleosynthesis with a varying fine structure constant: An improved estimate

    Full text link
    We compute primordial light-element abundances for cases with fine structure constant alpha different from the present value, including many sources of alpha dependence neglected in previous calculations. Specifically, we consider contributions arising from Coulomb barrier penetration, photon coupling to nuclear currents, and the electromagnetic components of nuclear masses. We find the primordial abundances to depend more weakly on alpha than previously estimated, by up to a factor of 2 in the case of ^7Li. We discuss the constraints on variations in alpha from the individual abundance measurements and the uncertainties affecting these constraints. While the present best measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise by adjusting alpha and the universal baryon density, no value of alpha allows all three to be accommodated simultaneously without consideration of systematic error. The combination of measured abundances with observations of acoustic peaks in the cosmic microwave background favors no change in alpha within the uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere

    Pre-main-sequence Lithium Depletion

    Full text link
    In this review I briefly discuss the theory of pre-main-sequence (PMS) Li depletion in low-mass (0.075<M<1.2 Msun) stars and highlight those uncertain parameters which lead to substantial differences in model predictions. I then summarise observations of PMS stars in very young open clusters, clusters that have just reached the ZAMS and briefly highlight recent developments in the observation of Li in very low-mass PMS stars.Comment: 8 pages, invited review at "Chemical abundances and mixing in stars in the Milky Way and its satellites", eds. L. Pasquini, S. Randich. ESO Astrophysics Symposium (Springer-Verlag

    Dephasing in sequential tunneling through a double-dot interferometer

    Get PDF
    We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interference setup consisting of two single-level quantum dots. Depending on the phase difference between the two tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath, it may act as a which-way detector, leading to partial suppression of the phase-coherence and the reappearance of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the bath is kept to all orders (using P(E) theory). We discuss the influence of different bath spectra on the visibility of the interference pattern, including the distinction between "mere renormalization effects" and "true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Effects of oxytocin administration and conditioned oxytocin on brain activity: An fMRI study

    Get PDF
    It has been demonstrated that secretion of several hormones can be classically conditioned, however, the underlying brain responses of such conditioning have never been investigated before. In this study we aimed to investigate how oxytocin administration and classically conditioned oxytocin influence brain responses. In total, 88 females were allocated to one of three groups: oxytocin administration, conditioned oxytocin, or placebo, and underwent an experiment consisting of three acquisition and three evocation days. Participants in the conditioned group received 24 IU of oxytocin together with a conditioned stimulus (CS) during t

    Generalised second law of thermodynamics for interacting dark energy in the DGP brane world

    Full text link
    In this paper, we investigate the validity of the generalized second law of thermodynamics (GSLT) in the DGP brane world when universe is filled with interacting two fluid system: one in the form of cold dark matter and other is holographic dark energy. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon or the event horizon. The universe is chosen to be homogeneous and isotropic FRW model and the validity of the first law has been assumed here

    Non-equilibrium Kondo effect in asymmetrically coupled quantum dot

    Full text link
    The quantum dot asymmetrically coupled to the external leads has been analysed theoretically by means of the equation of motion (EOM) technique and the non-crossing approximation (NCA). The system has been described by the single impurity Anderson model. To calculate the conductance across the device the non-equilibrium Green's function technique has been used. The obtained results show the importance of the asymmetry of the coupling for the appearance of the Kondo peak at nonzero voltages and qualitatively explain recent experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication
    • …
    corecore