1,615 research outputs found

    Scattering of accelerated wave packets

    Get PDF
    Wave-packet scattering from a stationary potential is significantly modified when the wave-packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave--packet motion is simply described by Newtonian equations and the external force can, for example, cancel the potential force making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave-packet. In the particular case of the recently-introduced class of complex Kramers-Kronig potentials we show that a broad class of time dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.Comment: 13 pages, 4 figures, to appear in Phys. Rev.

    A folding inhibitor of the HIV-1 Protease

    Full text link
    Being the HIV-1 Protease (HIV-1-PR) an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad of generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides is demonstrated with the help of spectrophotometric assays and CD spectroscopy

    Observation of surface states with algebraic localization

    Full text link
    We introduce and experimentally demonstrate a class of surface bound states with algebraic decay in a one-dimensional tight-binding lattice. Such states have an energy embedded in the spectrum of scattered states and are structurally stable against perturbations of lattice parameters. Experimental demonstration of surface states with algebraic localization is presented in an array of evanescently-coupled optical waveguides with tailored coupling rates.Comment: revised version with Supplemental Material, to appear in Phys. Rev. Let

    Nonlocal reflection by photonic barriers

    Full text link
    The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.Comment: 8 pages, 5 figure

    Optical realization of the two-site Bose-Hubbard model in waveguide lattices

    Full text link
    A classical realization of the two-site Bose-Hubbard Hamiltonian, based on light transport in engineered optical waveguide lattices, is theoretically proposed. The optical lattice enables a direct visualization of the Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication

    Nonlinearity-induced broadening of resonances in dynamically modulated couplers

    Full text link
    We report the observation of nonlinearity-induced broadening of resonances in dynamically modulated directional couplers. When the refractive index of the guiding channels in the coupler is harmonically modulated along the propagation direction and out-of-phase in two channels, coupling can be completely inhibited at resonant modulation frequencies. We observe that nonlinearity broadens such resonances and that localization can be achieved even in detuned systems at power levels well below those required in unmodulated couplers.Comment: 14 pages, 4 figures, to appear in Optics Letter

    Stability of the self-phase-locked pump-enhanced singly resonant parametric oscillator

    Get PDF
    Steady-state and dynamics of the self-phase-locked (3\omega ==> 2\omega, \omega) subharmonic optical parametric oscillator are analyzed in the pump-and-signal resonant configuration, using an approximate analytical model and a full propagation model. The upper branch solutions are found always stable, regardless of the degree of pump enhancement. The domain of existence of stationary states is found to critically depend on the phase-mismatch of the competing second-harmonic process.Comment: LateX2e/RevteX4, 4 pages, 5 figures. Submitted to Phys. Rev. A (accepted on Jan. 17, 2003

    Multistable Pulse-like Solutions in a Parametrically Driven Ginzburg-Landau Equation

    Full text link
    It is well known that pulse-like solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilised by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilising agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient cc), starting from the nonlinear Schr\"odinger limit (for which c=0c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.Comment: 13 pages, 6 figures; to appear in PR

    Polarization coupling and pattern selection in a type-II optical parametric oscillator

    Get PDF
    We study the role of a direct intracavity polarization coupling in the dynamics of transverse pattern formation in type-II optical parametric oscillators. Transverse intensity patterns are predicted from a stability analysis, numerically observed, and described in terms of amplitude equations. Standing wave intensity patterns for the two polarization components of the field arise from the nonlinear competition between two concentric rings of unstable modes in the far field. Close to threshold a wavelength is selected leading to standing waves with the same wavelength for the two polarization components. Far from threshold the competition stabilizes patterns in which two different wavelengths coexist.Comment: 14 figure

    Spinning Particles on Spacelike Hypersurfaces and their Rest-Frame Description

    Full text link
    A new spinning particle with a definite sign of the energy is defined on spacelike hypersurfaces after a critical discussion of the standard spinning particles. They are the pseudoclassical basis of the positive energy (12,0)({1\over 2},0) [or negative energy (0,12)(0,{1\over 2})] parts of the (12,12)({1\over 2},{1\over 2}) solutions of the Dirac equation. The study of the isolated system of N such spinning charged particles plus the electromagnetic field leads to their description in the rest-frame Wigner-covariant instant form of dynamics on the Wigner hyperplanes orthogonal to the total 4-momentum of the isolated system (when it is timelike). We find that on such hyperplanes these spinning particles have a nonminimal coupling only of the type "spin-magnetic field" like the nonrelativistic Pauli particles to which they tend in the nonrelativistic limit. The Lienard-Wiechert potentials associated with these charged spinning particles are found. Then, a comment on how to quantize the spinning particles respecting their fibered structure describing the spin structure is done.Comment: 70 pages, revte
    • …
    corecore