2,613 research outputs found

    Análise do transcriptoma de Fusarium decemcellulare agente causal do superbrotamento em guaranazeiro (Paullinia cupana var. sorbilis).

    Get PDF
    O guaraná da Amazônia é muito apreciado por suas propriedades medicinais e energéticas, sendo o Amazonas a segunda contribuição nacional na produção. Esta produção, entretanto, acaba sendo afetada por uma das principais doenças da cultura: o superbrotamento, que tem como agente causal o fungo Fusarium decemcellulare. Os sintomas da doença são: o superbrotamento de gemas, a hiperplasia e hipertrofia floral e as galhas do caule. Em diversos estudos, associa-se sintomas semelhantes aos do superbrotamento a uma produção, ou ainda modulação, do hormônio auxina por parte do patógeno. Assim, o objetivo deste trabalho foi de identificar genes de vias de síntese do hormônio auxina em Fusarium decemcellulare e analisar diferenças entre perfis transcriptômicos de isolados homotálicos e heterotálicos.Dissertação (Mestrado em Biotecnologia) - Universidade Federal do Amazonas, Manaus. Orientador: Dr. Gilvan Ferreira da Silva; coorientador: Dr. Michel Eduardo Beleza Yamagishi

    Localization of Narrowband Single Photon Emitters in Nanodiamonds

    Full text link
    © 2016 American Chemical Society. Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors

    Laser Interferometric Detectors of Gravitational Waves

    Get PDF
    A laser interferometric detector of gravitational waves is studied and a complete solution (to first order in the metric perturbation) of the coupled Einstein-Maxwell equations with appropriate boundary conditions for the light beams is determined. The phase shift, the light deflection and the rotation of the polarization axis induced by gravitational waves are computed. The results are compared with previous literature, and are shown to hold also for detectors which are large in comparison with the gravitational wavelength.Comment: 13 pages, LaTe

    Radial stability analysis of the continuous pressure gravastar

    Full text link
    Radial stability of the continuous pressure gravastar is studied using the conventional Chandrasekhar method. The equation of state for the static gravastar solutions is derived and Einstein equations for small perturbations around the equilibrium are solved as an eigenvalue problem for radial pulsations. Within the model there exist a set of parameters leading to a stable fundamental mode, thus proving radial stability of the continuous pressure gravastar. It is also shown that the central energy density possesses an extremum in rho_c(R) curve which represents a splitting point between stable and unstable gravastar configurations. As such the rho_c(R) curve for the gravastar mimics the famous M(R) curve for a polytrope. Together with the former axial stability calculations this work completes the stability problem of the continuous pressure gravastar.Comment: 17 pages, 5 figures, References corrected, minor changes wrt v1, matches published versio

    Self sustained traversable wormholes and the equation of state

    Get PDF
    We compute the graviton one loop contribution to a classical energy in a \textit{traversable} wormhole background. The form of the shape function considered is obtained by the equation of state p=ωρp=\omega\rho. We investigate the size of the wormhole as a function of the parameter ω\omega. The investigation is evaluated by means of a variational approach with Gaussian trial wave functionals. A zeta function regularization is involved to handle with divergences. A renormalization procedure is introduced and the finite one loop energy is considered as a \textit{self-consistent} source for the traversable wormhole.The case of the phantom region is briefly discussed.Comment: Uses RevTeX 4. 21 pages. Submitted to Classical and Quantum Gravity. Extended version of the talk given at ERE2006 (Palma de Mallorca, September 4-8, 2006) and of the talk given at MG11-GT5, Berlin, 23-29 July, 200

    Traversable wormholes coupled to nonlinear electrodynamics

    Get PDF
    In this work we explore the possible existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Considering static and spherically symmetric (2+1) and (3+1)-dimensional wormhole spacetimes, we verify the presence of an event horizon and the non-violation of the null energy condition at the throat. For the former spacetime, the principle of finiteness is imposed, in order to obtain regular physical fields at the throat. Next, we analyze the (2+1)-dimensional stationary and axisymmetric wormhole, and also verify the presence of an event horizon, rendering the geometry non-traversable. Relatively to the (3+1)-dimensional stationary and axisymmetric wormhole geometry, we find that the field equations impose specific conditions that are incompatible with the properties of wormholes. Thus, we prove the non-existence of the general class of traversable wormhole solutions, outlined above, within the context of nonlinear electrodynamics.Comment: 9 pages, Revtex4. V2: major change in title; considerable additions in the Introduction and in the rotating solution, no physics changes; correction of a reference, one reference added; now 10 pages. This version to appear in Classical and Quantum Gravit

    Charged anisotropic matter with linear equation of state

    Full text link
    We consider the general situation of a compact relativistic body with anisotropic pressures in the presence of the electromagnetic field. The equation of state for the matter distribution is linear and may be applied to strange stars with quark matter. Three classes of new exact solutions are found to the Einstein-Maxwell system. This is achieved by specifying a particular form for one of the gravitational potentials and the electric field intensity. We can regain anisotropic and isotropic models from our general class of solution. A physical analysis indicates that the charged solutions describe realistic compact spheres with anisotropic matter distribution. The equation of state is consistent with dark energy stars and charged quark matter distributions. The masses and central densities correspond to realistic stellar objects in the general case when anisotropy and charge are present.Comment: 17 pages, To appear in Class. Quantum Gra

    Notes on wormhole existence in scalar-tensor and F(R) gravity

    Full text link
    Some recent papers have claimed the existence of static, spherically symmetric wormhole solutions to gravitational field equations in the absence of ghost (or phantom) degrees of freedom. We show that in some such cases the solutions in question are actually not of wormhole nature while in cases where a wormhole is obtained, the effective gravitational constant G_eff is negative in some region of space, i.e., the graviton becomes a ghost. In particular, it is confirmed that there are no vacuum wormhole solutions of the Brans-Dicke theory with zero potential and the coupling constant \omega > -3/2, except for the case \omega = 0; in the latter case, G_eff < 0 in the region beyond the throat. The same is true for wormhole solutions of F(R) gravity: special wormhole solutions are only possible if F(R) contains an extremum at which G_eff changes its sign.Comment: 7 two-column pages, no figures, to appear in Grav. Cosmol. A misprint corrected, references update

    How to tell a gravastar from a black hole

    Full text link
    Gravastars have been recently proposed as potential alternatives to explain the astrophysical phenomenology traditionally associated to black holes, raising the question of whether the two objects can be distinguished at all. Leaving aside the debate about the processes that would lead to the formation of a gravastar and the astronomical evidence in their support, we here address two basic questions: Is a gravastar stable against generic perturbations? If stable, can an observer distinguish it from a black hole of the same mass? To answer these questions we construct a general class of gravastars and determine the conditions they must satisfy in order to exist as equilibrium solutions of the Einstein equations. For such models we perform a systematic stability analysis against axial-perturbations, computing the real and imaginary parts of the eigenfrequencies. Overall, we find that gravastars are stable to axial perturbations, but also that their quasi-normal modes differ from those of a black hole of the same mass and thus can be used to discern, beyond dispute, a gravastar from a black hole.Comment: 16 pages, 13 figures, minor improvemen

    ITS (Intergenic Transcribed Spacer) e Íntron-RFLP para caracterização de Colletotrichum spp. isolado de guaranazeiro.

    Get PDF
    O objetivo do trabalho foi utilizar as regiões ITS e o íntron do gene GS (Glutamine Synthetase) na caracterização de Colletotrichum spp., obtidos a partir de isolamento direto das lesões foliares típicas de antracnose em guaranazeiro
    corecore