409 research outputs found

    Sharing Space: The Presence of Other Bodies Extends the Space Judged as Near

    Get PDF
    Background: As social animals we share the space with other people. It is known that perceived extension of the peripersonal space (the reaching space) is affected by the implicit representation of our own and other's action potentialities. Our issue concerns whether the co-presence of a body in the scene influences our extrapersonal space (beyond reaching distance) categorization. Methodology/Principal Findings: We investigated, through 3D virtual scenes of a realistic environment, whether egocentric spatial categorization can be influenced by the presence of another human body (Exp. 1) and whether the effect is due to her action potentialities or simply to her human-like morphology (Exp. 2). Subjects were asked to judge the location ("Near" or "Far") of a target object located at different distances from their egocentric perspective. In Exp. 1, the judgment was given either in presence of a virtual avatar (Self-with-Other), or a non-corporeal object (Self-with-Object) or nothing (Self). In Exp. 2, the Self condition was replaced by a Self-with-Dummy condition, in which an inanimate body (a wooden dummy) was present. Mean Judgment Transition Thresholds (JTTs) were calculated for each subject in each experimental condition. Self-with-Other condition induced a significant extension of the space judged as "Near" as compared to both the Selfwith- Object condition and the Self condition. Such extension was observed also in Exp. 2 in the Self-with-Dummy condition. Results suggest that the presence of others impacts on our perception of extrapersonal space. This effect holds also when the other is a human-like wooden dummy, suggesting that structural and morphological shapes resembling human bodies are sufficient conditions for the effect to occur. Conclusions: The observed extension of the portion of space judged as near could represent a wider portion of "accessible" space, thus an advantage in the struggle to survive in presence of other potential competing individuals

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Expression of MuRF1 or MuRF2 is essential for the induction of skeletal muscle atrophy and dysfunction in a murine pulmonary hypertension model

    Get PDF
    Background Pulmonary hypertension leads to right ventricular heart failure and ultimately to cardiac cachexia. Cardiac cachexia induces skeletal muscles atrophy and contractile dysfunction. MAFbx and MuRF1 are two key proteins that have been implicated in chronic muscle atrophy of several wasting states. Methods Monocrotaline (MCT) was injected over eight weeks into mice to establish pulmonary hypertension as a murine model for cardiac cachexia. The effects on skeletal muscle atrophy, myofiber force, and selected muscle proteins were evaluated in wild-type (WT), MuRF1, and MuRF2-KO mice by determining muscle weights, in vitro muscle force and enzyme activities in soleus and tibialis anterior (TA) muscle. Results In WT, MCT treatment induced wasting of soleus and TA mass, loss of myofiber force, and depletion of citrate synthase (CS), creatine kinase (CK), and malate dehydrogenase (MDH) (all key metabolic enzymes). This suggests that the murine MCT model is useful to mimic peripheral myopathies as found in human cardiac cachexia. In MuRF1 and MuRF2-KO mice, soleus and TA muscles were protected from atrophy, contractile dysfunction, while metabolic enzymes were not lowered in MuRF1 or MuRF2-KO mice. Furthermore, MuRF2 expression was lower in MuRF1KO mice when compared to C57BL/6 mice. Conclusions In addition to MuRF1, inactivation of MuRF2 also provides a potent protection from peripheral myopathy in cardiac cachexia. The protection of metabolic enzymes in both MuRF1KO and MuRF2KO mice as well as the dependence of MuRF2 expression on MuRF1 suggests intimate relationships between MuRF1 and MuRF2 during muscle atrophy signaling

    Ventilatory muscle strength, diaphragm thickness and pulmonary function in world-class powerlifters.

    Get PDF
    Resistance training activates the ventilatory muscles providing a stimulus similar to ventilatory muscle training. We examined the effects of elite powerlifting training upon ventilatory muscle strength, pulmonary function and diaphragm thickness in world-class powerlifters (POWER) and a control group (CON) with no history of endurance or resistance training, matched for age, height and body mass

    Glioblastoma surgery imaging—reporting and data system: Standardized reporting of tumor volume, location, and resectability based on automated segmentations

    Get PDF
    Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software

    Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task

    Get PDF
    For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime

    Human papillomavirus, high-grade intraepithelial neoplasia and killer immunoglogulin-like receptors: a Western Australian cohort study

    Get PDF
    Background: Human papillomavirus (HPV) is the causative agent in cervical cancer and HPV genotypes 16 and 18 cause the majority of these cancers. Natural killer (NK) cells destroy virally infected and tumour cells via killer immunoglobulin-like receptors (KIR) that recognize decreased MHC class I expression. These NK cells may contribute to clearance of HPV infected and/or dysplastic cells, however since KIR controls NK cell activity, KIR gene variation may determine outcome of infection.Methods: KIR gene frequencies were compared between 147 patients with a history of high-grade cervical intraepithelial neoplasia (CIN) and a control population of 187, to determine if any KIR genes are associated with high-grade CIN. In addition a comparison was also made between cases of high grade CIN derived from 30 patients infected with HPV 16/18 and 29 patients infected with non-16/18 HPV to determine if KIR variation contributes to the disproportional carcinogenesis derived from HPV 16/18 infection.Results: High-grade CIN was weakly associated with the absence of KIR2DL2 and KIR2DS2 (p = 0.046 and 0.049 respectively, OR 0.6; 95% CI 0.4 – 0.9) but this association was lost after correction for multi-gene statistical analysis.No difference in KIR gene frequencies was found between high-grade CIN caused by HPV 16/18 and non-16/18.Conclusion: No strong association between KIR genes, high-grade CIN and HPV genotype was found in the Western Australian population

    Identification of Genes that Elicit Disuse Muscle Atrophy via the Transcription Factors p50 and Bcl-3

    Get PDF
    Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1−/− and Bcl-3−/− mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse
    • …
    corecore