252 research outputs found
A Secular Trend toward Earlier Male Sexual Maturity: Evidence from Shifting Ages of Male Young Adult Mortality
This paper shows new evidence of a steady long-term decline in age of male sexual maturity since at least the mid-eighteenth century. A method for measuring the timing of male maturity is developed based on the age at which male young adult mortality accelerates. The method is applied to mortality data from Sweden, Denmark, Norway, the United Kingdom, and Italy. The secular trend toward earlier male sexual maturity parallels the trend toward earlier menarche for females, suggesting that common environmental cues influence the speed of both males' and females' sexual maturation
Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor
BACKGROUND: Modulation of the expression of retinoic acid receptors (RAR) Ξ± and Ξ³ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. METHOD: In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). RESULTS: Both T and RA, when administered alone, stimulated (3)H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR Ξ± and Ξ³ mRNAs; increases paralleled that of (3)H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR Ξ± gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR Ξ± gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. CONCLUSIONS: Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR Ξ± gene suggests that AR-DNA interaction might mediate the effects of T on RAR Ξ± gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth
Bacillus anthracis Protease InhA Increases Blood-Brain Barrier Permeability and Contributes to Cerebral Hemorrhages
Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ΞinhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ΞinhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1
African ancestry of New World, Bemisia tabaci-whitefly species
Bemisia tabaci whitefly species are some of the worldβs most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8β86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time
Synaptic Maturation at Cortical Projections to the Lateral Amygdala in a Mouse Model of Rett Syndrome
Rett syndrome (RTT) is a neuro-developmental disorder caused by loss of function of Mecp2 - methyl-CpG-binding protein 2 - an epigenetic factor controlling DNA transcription. In mice, removal of Mecp2 in the forebrain recapitulates most of behavioral deficits found in global Mecp2 deficient mice, including amygdala-related hyper-anxiety and lack of social interaction, pointing a role of Mecp2 in emotional learning. Yet very little is known about the establishment and maintenance of synaptic function in the adult amygdala and the role of Mecp2 in these processes. Here, we performed a longitudinal examination of synaptic properties at excitatory projections to principal cells of the lateral nucleus of the amygdala (LA) in Mecp2 mutant mice and their wild-type littermates. We first show that during animal life, Cortico-LA projections switch from a tonic to a phasic mode, whereas Thalamo-LA synapses are phasic at all ages. In parallel, we observed a specific elimination of Cortico-LA synapses and a decrease in their ability of generating presynaptic long term potentiation. In absence of Mecp2, both synaptic maturation and synaptic elimination were exaggerated albeit still specific to cortical projections. Surprisingly, associative LTP was unaffected at Mecp2 deficient synapses suggesting that synaptic maintenance rather than activity-dependent synaptic learning may be causal in RTT physiopathology. Finally, because the timing of synaptic evolution was preserved, we propose that some of the developmental effects of Mecp2 may be exerted within an endogenous program and restricted to synapses which maturate during animal life
The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae
[Background]
Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.[Results]
In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regionsβ adaptive nature.[Conclusions]
The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.This work has been financially supported from the Spanish Government through MINECO and FEDER funds (AGL2013-47300-C3-3-R and PCIN-2015-143 grants) and from Generalitat Valenciana through PROMETEOII/2014/042 grant, awarded to JMG. This study has been carried out in the context of the European Project ERA-IB βYeastTempTationβ EGR thanks the Spanish government for an FPI grant BES-2011-044498 and MM also thanks the Generalitat Valenciana for a VALi+d ACIF/2015/194 grant. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer
<p>Abstract</p> <p>Background</p> <p>The cytochrome P450 (CYP) enzymes 2C19, 2D6, and 3A5 are responsible for converting the selective estrogen receptor modulator (SERM), tamoxifen to its active metabolites 4-hydroxy-tamoxifen (4OHtam) and 4-hydroxy-<it>N</it>-demethyltamoxifen (4OHNDtam, endoxifen). Inter-individual variations of the activity of these enzymes due to polymorphisms may be predictors of outcome of breast cancer patients during tamoxifen treatment. Since tamoxifen and estrogens are both partly metabolized by these enzymes we hypothesize that a correlation between serum tamoxifen and estrogen levels exists, which in turn may interact with tamoxifen on treatment outcome. Here we examined relationships between the serum levels of tamoxifen, estrogens, follicle-stimulating hormone (FSH), and also determined the genotypes of CYP2C19, 2D6, 3A5, and SULT1A1 in 90 postmenopausal breast cancer patients.</p> <p>Methods</p> <p>Tamoxifen and its metabolites were measured by liquid chromatography-tandem mass spectrometry. Estrogen and FSH levels were determined using a sensitive radio- and chemiluminescent immunoassay, respectively.</p> <p>Results</p> <p>We observed significant correlations between the serum concentrations of tamoxifen, <it>N</it>-dedimethyltamoxifen, and tamoxifen-<it>N</it>-oxide and estrogens (p < 0.05). The genotype predicted CYP2C19 activity influenced the levels of both tamoxifen metabolites and E1.</p> <p>Conclusions</p> <p>We have shown an association between tamoxifen and its metabolites and estrogen serum levels. An impact of CYP2C19 predicted activity on tamoxifen, as well as estrogen kinetics may partly explain the observed association between tamoxifen and its metabolites and estrogen serum levels. Since the role of estrogen levels during tamoxifen therapy is still a matter of debate further prospective studies to examine the effect of tamoxifen and estrogen kinetics on treatment outcome are warranted.</p
Evidence of the Trade-Off between Starvation and Predation Risks in Ducks
The theory of trade-off between starvation and predation risks predicts a decrease in body mass in order to improve flight performance when facing high predation risk. To date, this trade-off has mainly been validated in passerines, birds that store limited body reserves for short-term use. In the largest avian species in which the trade-off has been investigated (the mallard, Anas platyrhynchos), the slope of the relationship between mass and flight performance was steeper in proportion to lean body mass than in passerines. In order to verify whether the same case can be applied to other birds with large body reserves, we analyzed the response to this trade-off in two other duck species, the common teal (Anas crecca) and the tufted duck (Aythya fuligula). Predation risk was simulated by disturbing birds. Ducks within disturbed groups were compared to non-disturbed control birds. In disturbed groups, both species showed a much greater decrease in food intake and body mass during the period of simulated high risk than those observed in the control group. This loss of body mass allows reaching a more favourable wing loading and increases power for flight, hence enhancing flight performances and reducing predation risk. Moreover, body mass loss and power margin gain in both species were higher than in passerines, as observed in mallards. Our results suggest that the starvation-predation risk trade-off is one of the major life history traits underlying body mass adjustments, and these findings can be generalized to all birds facing predation. Additionally, the response magnitude seems to be influenced by the strategy of body reserve management
Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFΞ±; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFΞ± production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis
- β¦