299 research outputs found
M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss
This is the final version of the article. Available from American Society for Clinical Investigation via the DOI in this record.The current frontline symptomatic treatment for Alzheimer’s disease (AD) is whole-body upregulation of cholinergic
transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An
alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine
receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR–selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks
of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal
cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion
disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.ABT, AC, and PMS received funding from a Wellcome Trust Collaborative
Award (201529/Z/16/Z). ABT, SJB, AJB, and TMH were
funded through a Medical Research Council programme leader
grant provided by the MRC Toxicology Unit. CCF, LMB, AJM, and
HES were funded by the Eli Lilly Company. JMB received funding
through a Lilly Research Award Program (LRAP) grant (Eli
Lilly). RP received funding from the Marie Curie grant “Extrabrain”
(European Commission). AC is a senior principal research
fellow and PMS a principal research fellow of the National Health
and Medical Research Council of Australia. Tissue samples were
from Randy Woltjer at the Oregon Alzheimer’s Disease Center.
The Oregon Alzheimer’s Disease Center is supported by NIH grant P30AG008017
Next-generation sequencing of common osteogenesis imperfecta-related genes in clinical practice
Next generation sequencing (NGS) is a rapidly developing area in genetics. Utilizing this technology in the management of disorders with complex genetic background and not recurrent mutation hot spots can be extremely useful. In this study, we applied NGS, namely semiconductor sequencing to determine the most significant osteogenesis imperfecta-related genetic variants in the clinical practice. We selected genes coding collagen type I alpha-1 and-2 (COL1A1, COL1A2) which are responsible for more than 90% of all cases. CRTAP and LEPRE1/P3H1 genes involved in the background of the recessive forms with relatively high frequency (type VII and VIII) represent less than 10% of the disease. In our six patients (1-41 years), we identified 23 different variants. We found a total of 14 single nucleotide variants (SNV) in COL1A1 and COL1A2, 5 in CRTAP and 4 in LEPRE1. Two novel and two already well-established pathogenic SNVs have been identified. Among the newly recognized mutations, one results in an amino acid change and one of them is a stop codon. We have shown that a new full-scale cost-effective NGS method can be developed and utilized to supplement diagnostic process of osteogenesis imperfecta with molecular genetic data in clinical practice
Mitochondrial DNA Variant Discovery and Evaluation in Human Cardiomyopathies through Next-Generation Sequencing
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche's 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease
BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection
<p>Abstract</p> <p>Background</p> <p>Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.</p> <p>Results</p> <p>In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.</p> <p>Conclusion</p> <p>BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. The BLProt software is available at <url>http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%20protein/BLProt</url></p
Clinical practice: Swallowing problems in cerebral palsy
Cerebral palsy (CP) is the most common physical disability in early childhood. The worldwide prevalence of CP is approximately 2–2.5 per 1,000 live births. It has been clinically defined as a group of motor, cognitive, and perceptive impairments secondary to a non-progressive defect or lesion of the developing brain. Children with CP can have swallowing problems with severe drooling as one of the consequences. Malnutrition and recurrent aspiration pneumonia can increase the risk of morbidity and mortality. Early attention should be given to dysphagia and excessive drooling and their substantial contribution to the burden of a child with CP and his/her family. This review displays the important functional and anatomical issues related to swallowing problems in children with CP based on relevant literature and expert opinion. Furthermore, based on our experience, we describe a plan for approach of investigation and treatment of swallowing problems in cerebral palsy
History Shaped the Geographic Distribution of Genomic Admixture on the Island of Puerto Rico
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations
- …