14 research outputs found

    Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thrifty gene hypothesis posits that, in populations that experienced periods of feast and famine, natural selection favoured individuals carrying thrifty alleles that promote the storage of fat and energy. Polynesians likely experienced long periods of cold stress and starvation during their settlement of the Pacific and today have high rates of obesity and type 2 diabetes (T2DM), possibly due to past positive selection for thrifty alleles. Alternatively, T2DM risk alleles may simply have drifted to high frequency in Polynesians. To identify thrifty alleles in Polynesians, we previously examined evidence of positive selection on T2DM-associated SNPs and identified a T2DM risk allele at unusually high frequency in Polynesians. We suggested that the risk allele of the Gly482Ser variant in the <it>PPARGC1A </it>gene was driven to high frequency in Polynesians by positive selection and therefore possibly represented a thrifty allele in the Pacific.</p> <p>Methods</p> <p>Here we examine whether <it>PPARGC1A </it>is a thrifty gene in Pacific populations by testing for an association between Gly482Ser genotypes and BMI in two Pacific populations (Maori and Tongans) and by evaluating the frequency of the risk allele of the Gly482Ser variant in a sample of worldwide populations.</p> <p>Results</p> <p>We find that the Gly482Ser variant is associated with BMI in Tongans but not in Maori. In a sample of 58 populations worldwide, we also show that the 482Ser risk allele reaches its highest frequency in the Pacific.</p> <p>Conclusion</p> <p>The association between Gly482Ser genotypes and BMI in Tongans together with the worldwide frequency distribution of the Gly482Ser risk allele suggests that <it>PPARGC1A </it>remains a candidate thrifty gene in Pacific populations.</p

    Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice

    No full text
    PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis
    corecore