6 research outputs found
The Elusive Third Subunit IIa of the Bacterial B-Type Oxidases: The Enzyme from the Hyperthermophile Aquifex aeolicus
The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba3-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A. Here, we describe the presence in this enzyme of an additional transmembrane helix âsubunit IIaâ, which is composed of 41 amino acid residues with a measured molecular mass of 5105 Da. Moreover, we show that subunit II, as expected, is in fact longer than the originally annotated protein (from the genome) and contains a transmembrane domain. Using Aquifex aeolicus genomic sequence analyses, N-terminal sequencing, peptide mass fingerprinting and mass spectrometry analysis on entire subunits, we conclude that the B-type enzyme from this bacterium is a three-subunit complex. It is composed of subunit I (encoded by coxA2) of 59000 Da, subunit II (encoded by coxB2) of 16700 Da and subunit IIa which contain 12, 1 and 1 transmembrane helices respectively. A structural model indicates that the structural organization of the complex strongly resembles that of the ba3 cytochrome c oxidase from the bacterium Thermus thermophilus, the IIa helical subunit being structurally the lacking N-terminal transmembrane helix of subunit II present in the A-type oxidases. Analysis of the genomic context of genes encoding oxidases indicates that this third subunit is present in many of the bacterial oxidases from B-family, enzymes that have been described as two-subunit complexes
Mechanisms of redox-coupled proton transfer in proteins: role of the proximal proline in reactions of the [3Fe-4S] cluster in Azotobacter vinelandii ferredoxin I.
The 7Fe ferredoxin from Azotobacter vinelandii (AvFdI) contains a [3Fe-4S](+/0) cluster that binds a single proton in its reduced level. Although the cluster is buried, and therefore inaccessible to solvent, proton transfer from solvent to the cluster is fast. The kinetics and energetics of the coupled electron-proton transfer reaction at the cluster have been analyzed in detail by protein-film voltammetry, to reveal that proton transfer is mediated by the mobile carboxylate of an adjacent surface residue, aspartate-15, the pK of which is sensitive to the charge on the cluster. This paper examines the role of a nearby proline residue, proline-50, in proton transfer and its coupling to electron transfer. In the P50A and P50G mutants, a water molecule has entered the cluster binding region; it is hydrogen bonded to the backbone amide of residue-50 and to the Asp-15 carboxylate, and it is approximately 4 A from the closest sulfur atom of the cluster. Despite the water molecule linking the cluster more directly to the solvent, proton transfer is not accelerated. A detailed analysis reveals that Asp-15 remains a central part of the mechanism. However, the electrostatic coupling between cluster and carboxylate is almost completely quenched, so that cluster reduction no longer induces such a favorable shift in the carboxylate pK, and protonation of the base no longer induces a significant shift in the pK of the cluster. The electrostatic coupling is crucial for maintaining the efficiency of proton transfer both to and from the cluster, over a range of pH values
Probing the Action of Cytochrome c Oxidase
Density functional theory (DFT) and combined Molecular Mechanics/Quantum Mechanics (MM/QM-MD) calculations have been applied to models of the cytochrome c oxidase (CcO) including the FeâCuB binuclear center, where dioxygen is bound and subsequently reduced to water. The properties of several intermediates of the CcO dioxygen reaction have been investigated by theoretical approaches. In this chapter, we investigate the dynamics of the binuclear heme FeâCuB throughout the O2 catalytic cycle. We are focused on the effects of the protein matrix and proton/water motion exerted on the heme a 3 group. For this, we have built models of CcO, which vary at the heme a 3 environment. This variability is based on hydrogen bonding interactions and amino acid protonation states. Different control points have been identified for the transition from one intermediate to the next. The hydrogen bonding networks in the proximity of heme a 3 area also have consequences for the characteristics of the binuclear center. A theoretical framework for the direct link between an H+ delivery channel (termed D) and an accumulation of waters, termed âwater poolâ close to the active site, has been achieved at the QM/MM level of theory. Two proton valves (E278 and His403) and an electron/proton coupling site (propionate-A/Asp399) exist in this pathway for the aa 3 CcO from P. denitrificans. The ferryl intermediate, produced subsequent to the OâO bond scission, is found to have characteristics highly dependent on the basicity of the proximal His411, in contrast to the hydroxyl intermediate that is sensitive to distal effects
Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster
Abstract Desulfovibrio gigas ferredoxin II (DgFdII) is a small protein with a polypeptide chain composed of 58 amino acids, containing one Fe3S4 cluster per monomer. Upon studying the redox cycle of this protein, we detected a stable intermediate (FdIIint) with four 1H resonances at 24.1, 20.5, 20.8 and 13.7 ppm. The differences between FdIIox and FdIIint were attributed to conformational changes resulting from the breaking/formation of an internal disulfide bridge. The same 1H NMR
methodology used to fully assign the three cysteinyl ligands of the [3Feâ4S] core in the oxidized state (DgFdIIox) was used here for the assignment of the same three ligands in the intermediate state (DgFdIIint). The
spin-coupling model used for the oxidized form of DgFdII where magnetic exchange coupling constants of around 300 cm 1 and hyperfine coupling constants equal to 1 MHz for all the three iron centres were found,
does not explain the isotropic shift temperature dependence for the three cysteinyl cluster ligands in DgFdIIint. This study, together with the spin delocalization mechanism proposed here for DgFdIIint, allows the detection of structural modifications at the [3Fe-4S] cluster in
DgFdIIox and DgFdIIint