6 research outputs found

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    Contribution of honeybees to soybean yield

    Get PDF
    Despite the economic importance of soybean [Glycine max (L.) Merr.], knowledge on the contribution of entomological pollination on seed yield is scarce. This study estimates the production of soybean resulting from pollination by honeybees (Apis mellifera L.) in two consecutive growing seasons in Paraná (Argentina). Experiments had two treatments: excluded flower-visiting insects (EV) and non-excluded flower-visiting insects (NEV). The abundance of honeybees was similar in both years, although soybean production differed significantly (P < 0.05) between years. The NEV treatment out-yielded (P < 0.001) the EV treatment by 18% (5224 vs. 4415 kg ha−1) in year 1, which was associated with an increase in the seeds per unit area but not with individual seed weight. In contrast, seed yield (on average 3830 kg ha−1) and seeds per unit area did not differ between treatments in year 2. Individual seed weight was 3–5% (P < 0.05) higher in EV than in NEV in both years. The mechanisms involved in the seed yield increase could be related with pollen sterility in relegated flowers in secondary racemes or in distal locations of primary racemes under favorable conditions, as recorded in year 1. Thus, the action of honeybees carrying pollen from fertile flowers to relegated flowers may have increased the pod and seed set in treatment NEV in year 1.EEA ParanáFil: Blettler, Diego César. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Fagundez, Guillermina Andrea. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentin

    Molecular imaging in cancer treatment

    No full text
    corecore