57 research outputs found

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Mouse Embryonic Retina Delivers Information Controlling Cortical Neurogenesis

    Get PDF
    The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development [1]. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded [2], the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system

    Localization and detection of visual stimuli in monkeys with pulvinar lesions

    Full text link
    Since the pulvinar receives a major ascending projection of the superior colliculus, pulvinar lesions might produce behavioral impairments resembling those that follow colliculus lesions. To test this possibility, we examined the effect of pulvinar lesions in monkeys on the localization and detection of brief light flashes, a task in which monkeys with colliculus lesions are severely impaired. Some of the pulvinar-lesioned monkeys showed localization impairments similar to those in monkeys with colliculus lesions. However, histological analyses of the lesions suggested that these deficits were related not to the pulvinar damage per se, but rather to interruption of corticotectal fibers that pass through the pulvinar. We conclude that the pulvinar is not critical for the ability to locate and detect brief visual stimuli.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46551/1/221_2004_Article_BF00238622.pd

    Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus

    Get PDF
    Spontaneous retinal activity (known as “waves”) remodels synaptic connectivity to the lateral geniculate nucleus (LGN) during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF) retinal ganglion cells (RGCs) in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our model suggests that diverse input statistics of retinal waves can be robustly interpreted by a burst-based rule, which underlies retinogeniculate plasticity across different species

    Functional Foveal Splitting: Evidence from Neuropsychological and Multimodal MRI Investigations in a Chinese Patient with a Splenium Lesion

    Get PDF
    It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels

    Culture, Neurobiology, and Human Behavior: New Perspectives in Anthropology

    Get PDF
    Our primary goal in this article is to discuss the cross-talk between biological and cultural factors that become manifested in the individual brain development, neural wiring, neurochemical homeostasis, and behavior. We will show that behavioral propensities are the product of both cultural and biological factors and an understanding of these interactive processes can provide deep insights into why people behave the way they do. This interdisciplinary perspective is offered in an effort to generate dialog and empirical work among scholars interested in merging aspects of anthropology and neuroscience, and anticipates that biological and cultural anthropology converge. We discuss new theoretical developments, hypothesis-testing strategies, and cross-disciplinary methods of observation and data collection. We believe that the exigency of integrating anthropology and the neurosciences is indisputable and anthropology's role in an emerging interdisciplinary science of human behavior will be critical because its focus is, and has always been, on human biological and cultural systems

    The emergence of light responses

    No full text

    Blockade of glutamate-mediated activity in the developing retina perturbs functional segregation of ON and OFF pathways

    No full text
    The dendrites of ganglion cells initially ramify throughout the inner plexiform layer of the developing retina before becoming stratified into ON or OFF sublaminae. This ontogenetic event is thought to depend on glutamate-mediated afferent activity, because treating the developing retina with the glutamate analog 2-amino-4-phosphonobutyrate (APB), which hyperpolarizes ON cone bipolar cells and rod bipolar cells, thereby preventing their release of glutamate, effectively arrests the dendritic stratification process. To assess the functional consequences of this manipulation, extracellular recordings were made from single cells in the A laminae of the dorsal lateral geniculate nucleus and from the optic tract in mature cats that had received intraocular injections of APB during the first postnatal month. Such recordings revealed that stimulation of the APB-treated eye evoked both ON as well as OFF discharges in 37% of the cells tested. (As expected, when the normal eye was activated, virtually all cells yielded only ON or OFF responses.) The proportion of ON-OFF cells found here corresponds closely to the incidence of multistratified dendrites observed previously in anatomical studies of APB-treated cat retinas. This suggests that the ganglion cells with multistratified dendrites receive functional inputs from ON as well as OFF cone bipolar cells. This interpretation is further supported by the finding that the proportion of ON-OFF cells was very similar in the geniculate layer innervated by the treated eye and in the optic tract. The cells activated by the APB-treated eye were also found not to show response suppression when flashing stimuli of increasing size were used. This suggests that exposing the developing retina to APB perturbs the neural circuitry mediating the antagonistic center-surround organization found in normal receptive fields. The functional changes evident after treating the developing retina with APB suggest that it should now be feasible to assess how the segregation of ON and OFF retinal pathways relates to organizational features at higher levels of the visual system, such as orientation selectivity in cortical cells
    corecore