7 research outputs found

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Gravitational Lensing in Astronomy

    Get PDF
    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, physics of quasars, dark matter in galaxy halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF format due to size constraints). High quality postscript files can be obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm

    Two Strong-Lensing Clusters Confront Universal Dark Matter Profiles

    No full text

    BUFFALO wild wings: a high-precision free-form lens model of MACSJ0416 with constraints on dark matter from substructure and highly magnified arcs

    No full text
    We present new free-form and hybrid mass reconstructions of the galaxy cluster lens MACS J0416.1−2403 at z=0.396 using the lens inversion method GRALE. The reconstructions use 237 spectroscopically confirmed multiple images from Bergamini et. al. 2023 as the main input. Our primary model reconstructs images to a positional accuracy of 0.191", thus representing one of the most precise reconstructions of this lens to date. Our models find broad agreement with previous reconstructions, and identify two ∼1012M⊙ light-unaffiliated substructures. We focus on two highly magnified arcs: Spock and Mothra. Our model features a unique critical curve structure around the Spock arc with 2 crossings. This structure enables sufficient magnification across this arc to potentially explain the large number of transients as microlensing events of supergiant stars. Additionally, we develop a model of the millilens substructure expected to be magnifying Mothra, which may be a binary pair of supergiants with μ∼6000. This model accounts for flexibility in the millilens position while preserving the observed flux and minimizing image position displacements along the Mothra arc. We constrain the millilens mass and core radius to ≲106M⊙ and ≲17 pc, respectively, which would render it one of the smallest and most compact substructures constrained by lensing. If the millilens is dominated by wave dark matter, the axion mass is constrained to be ≲3.0×10−21 eV. Further monitoring of this lens with JWST will uncover more transients, permitting tighter constraints on the structure surrounding these two arcs.The authors acknowledge the computational resources provided by the Minnesota Supercomputing Institute (MSI), which were critical for this study. We thank Pietro Bergamini for providing necessary measurements used in this work for effective comparison with their model. The authors also would like to thank Lindsey Gordon, John Hamilton Miller Jr, and Joseph Allingham for useful discussions and suggestions regarding this work. DP acknowledges the School of Physics and Astronomy, University of Minnesota for partially supporting this work through the Robert O. Pepin Fellowship. PN is partially supported by theBlack Hole Initiative at Harvard University, which is funded by the Gordon and Betty Moore Foundation grant 8273, and the John Templeton Foundation grant 61497. ML acknowledges the Centre National de la Recherche Scientifique (CNRS) and the Centre National des Etudes Spatiale (CNES) for support
    corecore