104 research outputs found

    Control of mucocutaneous leishmaniasis, a neglected disease: results of a control programme in Satipo Province, Peru.

    Get PDF
    Mucocutaneous leishmaniasis (MCL) is an important health problem in many rural areas of Latin America, but there are few data on the results of programmatic approaches to control the disease. We report the results of a control programme in San Martin de Pangoa District, which reports one of the highest prevalences of MCL in Peru. For 2 years (2001--2002), the technicians at the health post were trained in patient case management, received medical support and were supplied with antimonials. An evaluation after 2 years showed the following main achievements: better diagnosis of patients, who were confirmed by microscopy in 34% (82/240) of the cases in 2001 and 60% of the cases (153/254) in 2002; improved follow-up during treatment: 237 of 263 (90%) patients who initiated an antimonial therapy ended the full treatment course; improved follow-up after treatment: 143 of 237 (60%) patients who ended their full treatment were correctly monitored during the required period of 6 (cutaneous cases) or 12 (mucosal cases) months after the end of treatment. These achievements were largely due to the human and logistical resources made available, the constant availability of medications and the close collaboration between the Ministry of Health, a national research institute and an international non-governmental organization. At the end of this period, the health authorities decided to register a generic brand of sodium stibogluconate, which is now in use. This should allow the treatment of a significant number of additional patients, while saving money to invest in other facets of the case management

    Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax.

    Get PDF
    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector-pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi-Plasmodium interactions

    Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa

    Get PDF
    BACKGROUND: In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb) gene (Tyr268Ser and Tyr268Asn). However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. METHODS: The prevalence of codon-268 mutations in the cytb gene of African P. falciparum isolates from Nigeria, Malawi and Senegal, where atovaquone-proguanil has not been introduced for treatment of malaria was assessed. Genotyping of the cytb gene in isolates of P. falciparum was performed by PCR-restriction fragment length polymorphism and confirmed by sequencing. RESULTS: 295 samples from Nigeria (111), Malawi (91) and Senegal (93) were successfully analyzed for detection of either mutant Tyr268Ser or Tyr268Asn. No case of Ser268 or Asn268 was detected in cytb gene of parasites from Malawi or Senegal. However, Asn268 was detected in five out of 111 (4.5%) unexposed P. falciparum isolates from Nigeria. In addition, one out of these five mutant Asn268 isolates showed an additional cytb mutation leading to a Pro266Thr substitution inside the ubiquinone reduction site. CONCLUSION: No Tyr268Ser mutation is found in cytb of P. falciparum isolates from Nigeria, Malawi or Senegal. This study reports for the first time cytb Tyr268Asn mutation in unexposed P. falciparum isolates from Nigeria. The emergence in Africa of P. falciparum isolates with cytb Tyr268Asn mutation is a matter of serious concern. Continuous monitoring of atovaquone-proguanil resistant P. falciparum in Africa is warranted for the rational use of this new antimalarial drug, especially in non-immune travelers

    Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates

    Get PDF
    Leishmania is a group of parasites (Protozoa, Trypanosomatidae) responsible for a wide spectrum of clinical forms. Among the factors explaining this phenotypic polymorphism, parasite features are important contributors. One approach to identify them consists in characterizing the gene expression profiles throughout the life cycle. In a recent study, the transcriptome of 3 Leishmania species was compared and this revealed species-specific differences, albeit in a low number. A key issue, however, is to ensure that the observed differences are indeed species-specific and not specific of the strains selected for representing the species. In order to illustrate the relevance of this concern, we analyzed here the gene expression profiles of 5 clinical isolates of L. braziliensis at seven time points of the life cycle. Our results clearly illustrate the unique character of each isolate in terms of gene expression dynamics: one Leishmania strain is not necessarily representative of a given species

    KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

    Get PDF
    Leishmaniasis is a neglected disease caused by the Leishmania parasite and transmitted by the bite of an infective sand fly. Despite the importance of this disease there is no vaccine available for humans. Studies have shown that vector-transmitted infections are more virulent, promoting parasite establishment and abrogating protection observed against needle-injected parasites in vaccinated mice. KSAC and L110f, derived from Leishmania-based polyproteins, protected mice against the needle-injected parasites. Here, we tested the two molecules for their capacity to protect mice against cutaneous leishmaniasis transmitted by an infective sand fly. Our results show that KSAC, but not L110f, confers protection against Leishmania transmitted by sand fly bites where protection was correlated to a strong immune response to Leishmania antigens by memory T cells before and after sand fly transmission of the parasite. This is the first report of a Leishmania-based vaccine that confers protection against a virulent sand fly challenge. Our results support the importance of screening Leishmania vaccine candidates using infective sand flies before moving forward with the costly steps of vaccine development

    Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine

    Get PDF
    Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity

    Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-α production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) produced in macrophages plays a pivotal role as a leishmanicidal agent. A previous study has demonstrated that 20% of the <it>L. (V.) braziliensis </it>isolated from initial cutaneous lesions of patients from the endemic area of Corte de Pedra, Bahia, Brazil, were NO resistant. Additionally, 5 to 11% of the patients did not respond to three or more antimony treatments" (refractory patients). The aim of this study is to investigate if there is an association between the resistance of <it>L. (V.) braziliensis </it>to NO and nonresponsiveness to antimony therapy and cytokine production.</p> <p>Methods</p> <p>We evaluated the <it>in vitro </it>toxicity of NO against the promastigotes stages of <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients, and the infectivity of the amastigote forms of these isolates against human macrophages. The supernatants from <it>Leishmania </it>infected macrophage were used to measure TNF-α and IL-10 levels.</p> <p>Results</p> <p>Using NaNO<sub>2 </sub>(pH 5.0) as the NO source, <it>L. (V.) braziliensis </it>isolated from refractory patients were more NO resistant (IC50 = 5.8 ± 4.8) than <it>L. (V.) braziliensis </it>isolated from responsive patients (IC50 = 2.0 ± 1.4). Four isolates were selected to infect human macrophages: NO-susceptible and NO-resistant <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients. NO-resistant <it>L. (V.) braziliensis </it>isolated from refractory patients infected more macrophages stimulated with LPS and IFN-γ at 120 hours than NO-susceptible <it>L. (V.) braziliensis </it>isolated from refractory patients. Also, lower levels of TNF-α were detected in supernatants of macrophages infected with NO-resistant <it>L. (V.) braziliensis </it>as compared to macrophages infected with NO-susceptible <it>L. (V.) braziliensis </it>(p < 0.05 at 2, 24 and 120 hours), while no differences were detected in IL-10 levels.</p> <p>Conclusion</p> <p>These data suggest that NO resistance could be related to the nonresponsiveness to antimony therapy seen in American Tegumentary Leishmaniasis.</p

    DETC Induces Leishmania Parasite Killing in Human In Vitro and Murine In Vivo Models: A Promising Therapeutic Alternative in Leishmaniasis

    Get PDF
    Background: Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings: We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p,0.001) and is able to ??????sterilize?????? Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p,0.001) and parasite destruction (p,0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p,0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance: Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection
    corecore