187 research outputs found
Development and Function of CD94-Deficient Natural Killer Cells
The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions
Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains
Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors
A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat
Background
Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits.
Results
TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields.
Conclusions
Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure
Effect of Recombinant Cytokines on the Expression of Natural Killer Cell Receptors from Patients with TB or/and HIV Infection
BACKGROUND: NK cells express several specialized receptors through which they recognize and discriminate virally-infected/tumor cells efficiently from healthy cells and kill them. This ability to lyse is regulated by an array of inhibitory or activating receptors. The present study investigated the frequency of various NK receptors expressed by NK cell subsets from HIV-infected TB patients. The effect of IL-15+IL-12 stimulation on the expression of NK receptors was also studied. METHODOLOGY/PRINCIPAL FINDINGS: The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals and patients with HIV and tuberculosis co-infection. The expression of NK cell receptors was analyzed on two NK cell subsets within the peripheral blood: CD16+CD3- and CD56+CD3- using flow cytometry. The expression of inhibitory receptors (CD158a, CD158b, KIRp70, CD85j and NKG2A) on NK subsets was increased in HIV, when compared to NHS. But the response in HIV-TB was not uniform. Stimulation with IL-15+IL-12 dropped (p<0.05) the expression of CD85j and NKG2A in HIV. The basal expression of natural cytotoxicity receptors (NKp30 and NKp46) on NK cell subsets was lowered (p<0.05) in HIV and HIV-TB as compared to NHS. However, the expression of NKp44 and NKG2D was elevated in HIV. Enhanced NKp46 and NKG2D expression was observed in HIV with IL-15+IL-12 stimulation. The coreceptor NKp80 was found to be expressed in higher numbers on NK subsets from HIV compared to NHS, which elevated with IL-15+IL-12 stimulation. The expression of NK receptors and response to stimulation was primarily on CD56+CD3- subset. CONCLUSIONS/SIGNIFICANCE: IL-15+IL-12 has an immunomodulatory effect on NK cell subsets from HIV-infected individuals viz down-regulation of iNKRs, elevation of activatory receptors NKp46 and NKG2D, and induction of coreceptor NKp80. IL-15+IL-12 is not likely to be of value when co-infected with TB probably due to the influence of tuberculosis
Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration
A major goal of personalized medicine is to pre-symptomatically identify individuals at high risk for disease using knowledge of each individual's particular genetic profile and constellation of environmental risk factors. With the identification of several well-replicated risk factors for age-related macular degeneration (AMD), the leading cause of legal blindness in older adults, this previously unreachable goal is beginning to seem less elusive. However, recently developed algorithms have either been much less accurate than expected, given the strong effects of the identified risk factors, or have not been applied to independent datasets, leaving unknown how well they would perform in the population at large. We sought to increase accuracy by using novel modeling strategies, including multifactor dimensionality reduction (MDR) and grammatical evolution of neural networks (GENN), in addition to the traditional logistic regression approach. Furthermore, we rigorously designed and tested our models in three distinct datasets: a Vanderbilt-Miami (VM) clinic-based case-control dataset, a VM family dataset, and the population-based Age-related Maculopathy Ancillary (ARMA) Study cohort. Using a consensus approach to combine the results from logistic regression and GENN models, our algorithm was successful in differentiating between high- and low-risk groups (sensitivity 77.0%, specificity 74.1%). In the ARMA cohort, the positive and negative predictive values were 63.3% and 70.7%, respectively. We expect that future efforts to refine this algorithm by increasing the sample size available for model building, including novel susceptibility factors as they are discovered, and by calibrating the model for diverse populations will improve accuracy
Lipidomics Analysis Reveals Efficient Storage of Hepatic Triacylglycerides Enriched in Unsaturated Fatty Acids after One Bout of Exercise in Mice
Background: Endurance exercise induces lipolysis, increases circulating concentrations of free fatty acids (FFA) and the uptake and oxidation of fatty acids in the working muscle. Less is known about the regulation of lipid metabolism in the liver during and post-exercise
A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire
Orientation of the Calcium Channel β Relative to the α12.2 Subunit Is Critical for Its Regulation of Channel Activity
BACKGROUND: The Ca(v)beta subunits of high voltage-activated Ca(2+) channels control the trafficking and biophysical properties of the alpha(1) subunit. The Ca(v)beta-alpha(1) interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID) be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(1)2.2, then testing for Ca(v)beta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(v)beta with respect to alpha(1)2.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Ca(v)beta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(v)beta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(v)beta subunit relative to the alpha(1)2.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(v)beta to regulate channel activity
Host Genetic Background Strongly Influences the Response to Influenza A Virus Infections
The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses
- …