303 research outputs found

    The scale of population structure in Arabidopsis thaliana

    Get PDF
    The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Associations of education with 30 year life course blood pressure trajectories: Framingham Offspring Study

    Get PDF
    Background: Education is inversely associated with cardiovascular disease incidence in developed countries. Blood pressure may be an explanatory biological mechanism. However few studies have investigated educational gradients in longitudinal blood pressure trajectories, particularly over substantial proportions of the life course. Study objectives were to determine whether low education was associated with increased blood pressure from multiple longitudinal assessments over 30 years. Furthermore, we aimed to separate antecedent effects of education, and other related factors, that might have caused baseline differences in blood pressure, from potential long-term effects of education on post-baseline blood pressure changes. Methods: The study examined 3890 participants of the Framingham Offspring Study (mean age 36.7 years, 52.0% females at baseline) from 1971 through 2001 at up to 7 separate examinations using multivariable mixed linear models. Results: Mixed linear models demonstrated that mean systolic blood pressure (SBP) over 30 years was higher for participants with ≤12 vs. ≥17 years education after adjusting for age (3.26 mmHg, 95% CI: 1.46, 5.05 in females, 2.26 mmHg, 95% CI: 0.87, 3.66 in males). Further adjustment for conventional covariates (antihypertensive medication, smoking, body mass index and alcohol) reduced differences in females and males (2.86, 95% CI: 1.13, 4.59, and 1.25, 95% CI: -0.16, 2.66 mmHg, respectively). Additional analyses adjusted for baseline SBP, to evaluate if there may be educational contributions to post-baseline SBP. In analyses adjusted for age and baseline SBP, females with ≤12 years education had 2.69 (95% CI: 1.09, 4.30) mmHg higher SBP over follow-up compared with ≥17 years education. Further adjustment for aforementioned covariates slightly reduced effect strength (2.53 mmHg, 95% CI: 0.93, 4.14). Associations were weaker in males, where those with ≤12 years education had 1.20 (95% CI: -0.07, 2.46) mmHg higher SBP over follow-up compared to males with ≥17 years of education, after adjustment for age and baseline blood pressure; effects were substantially reduced after adjusting for aforementioned covariates (0.34 mmHg, 95% CI: -0.90, 1.68). Sex-by-education interaction was marginally significant (p = 0.046). Conclusion: Education was inversely associated with higher systolic blood pressure throughout a 30-year life course span, and associations may be stronger in females than males.Eric B Loucks, Michal Abrahamowicz, Yongling Xiao, John W Lync

    Improvement in Peripheral Glucose Uptake After Gastric Bypass Surgery Is Observed Only After Substantial Weight Loss Has Occurred and Correlates with the Magnitude of Weight Lost

    Get PDF
    # 2009 The Author(s). This article is published with open access at Springerlink.com Introduction Altered gut and pancreatic hormone secretion may bolster resolution of insulin resistance after Roux-en-Y gastric bypass (RYGB), but the independent effects of weight loss and hormonal secretion on peripheral glucose disposal are unknown. Methods Two groups of nondiabetic morbidly obese patients were studied: RYGB followed by standardized caloric restriction (RYGB, n=12) or caloric restriction alone (diet, n=10). Metabolic evaluations (euglycemic–hyperinsulinemic clamp, meal tolerance test) were done at baseline and 14 days (both groups) and 6 months after RYGB

    Multiple Novel Nesprin-1 and Nesprin-2 Variants Act as Versatile Tissue-Specific Intracellular Scaffolds

    Get PDF
    <div><h3>Background</h3><p>Nesprins (<u>N</u>uclear <u>e</u>nvelope <u>s</u>pectrin-<u>r</u>epeat <u>p</u>roteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.</p> <h3>Results</h3><p>In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types.</p> <h3>Conclusions</h3><p>These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.</p> </div

    Diagnosing Hunter syndrome in pediatric practice: practical considerations and common pitfalls

    Get PDF
    Mucopolysaccharidosis II (MPS II), or Hunter syndrome, is an X-linked lysosomal storage disorder caused by a deficiency in the enzyme iduronate-2-sulfatase. Affected patients suffer progressive damage to multiple organ systems and early mortality. Two thirds of patients also manifest cognitive impairment and developmental delays. MPS II can be extremely difficult to diagnose before irreversible organ and tissue damage has occurred because of an insidious onset and the overlap in signs and symptoms with common childhood complaints. This is particularly true of patients without cognitive impairment (attenuated phenotype). Although not curative, early treatment with enzyme replacement therapy before irreversible organ damage has occurred may result in the greatest clinical benefit. Here, the signs, symptoms, and surgical history that should trigger suspicion of MPS II are described, and the diagnostic process is reviewed with a focus on practical considerations and the avoidance of common diagnostic pitfalls. Once a diagnosis is made, multidisciplinary management with an extended team of pediatric specialists is essential and should involve the pediatrician or family practice physician as facilitator and medical home for the patient and family. Conclusion: Because routine newborn screening is not yet available for MPS II, the involvement and awareness of pediatricians, family practice physicians, and pediatric specialists is critical for early identification, diagnosis, and referral in order to help optimize patient outcomes
    • …
    corecore